首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of CuGaSe2 have been prepared by flash evaporation technique. The optical properties of the prepared films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 400 to 2500 nm. The optical constants as refractive index, n, and absorption index, k, were calculated and found to be independent of film thickness in the range of the film thickness 132–423 nm. The analysis of the photon energy against the absorption coefficient showed three direct optical transitions (one of them is allowed while the others are forbidden). This direct transition was ascribed to the crystal field and spin orbital splitting of the upper most valence band. The crystal field and spin orbital splitting of CuGaSe2 were found to be ? 0.15 eV and 0.45 eV, respectively. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–DiDomenico (WD) model. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N / m*) were estimated. The capacitance–voltage measurements of CuGaSe2/p-Si heterojunction showed that the diode is abrupt junction diode. The carrier concentration and the built-in voltage were estimated. The current–voltage characteristics of the device under illumination were investigated and photovoltaic properties of the device were evaluated.  相似文献   

2.
In this study, plasma polymerized 2, 6-diethylaniline (PPDEA) thin films of different thicknesses were synthesized using a glow discharge plasma polymerization method. Scanning electron microscopy showed that the surface morphology of an as-deposited PPDEA thin film was comparatively smooth after iodine doping. The iodine-doped PPDEA was found to be thermally stable up to ca about 560 K, which was slightly lower than that observed for as-deposited PPDEA. Ultraviolet-visible spectroscopic analyses demonstrated that iodine doping resulted in a significant decrease in the optical energy gap. As the doping period increased, the direct optical transition energy gap was reduced from 3.56 to 2.79 eV and the indirect optical transition energy gap was decreased from 2.23 to 1.97 eV. Thus it is observed that, the optical parameters of as-deposited PPDEA thin films with different thicknesses can be modified with different iodine doping periods.  相似文献   

3.
Undoped CdO films were prepared by sol–gel method. Transparent heterojunction diodes were fabricated by depositing n-type CdO films on the n-type GaN (0001) substrate. Current–voltage (IV) measurements of the device were evaluated, and the results indicated a non-ideal rectifying characteristic with IF/IR value as high as 1.17×103 at 2 V, low leakage current of 4.88×10−6 A and a turn-on voltage of about 0.7 V. From the optical data, the optical band gaps for the CdO film and GaN were calculated to be 2.30 eV and 3.309 eV, respectively. It is evaluated that interband transition in the film is provided by the direct allowed transition. The n-GaN (0001)/CdO heterojunction device has an optical transmission of 50–70% from 500 nm to 800 nm wavelength range.  相似文献   

4.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

5.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

6.
《Current Applied Physics》2010,10(3):790-796
CdO and Al-doped CdO nano-crystalline thin films have been prepared on glass at 300 °C substrate temperature by spray pyrolysis. The films are highly crystalline with grain size (18–32 nm) and found to be cubic structure with lattice constant averaged to 0.46877 nm. Al-doping increased the optical transmission of the film substantially. Direct band gap energy of CdO is 2.49 eV which decreased with increasing Al-doping. The refractive index and dielectric constant varies with photon energy and concentration of Al as well. The conductivity of un-doped CdO film shows metallic behavior at lower temperature region. This behavior dies out completely with doping of Al and exhibits semiconducting behavior for whole measured temperature range. Un-doped and Al-doped CdO is an n-type semiconductor having carrier concentration is of the order of ∼1021 cm−3, confirmed by Hall voltage and thermo-power measurements.  相似文献   

7.
The 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) doped polymer films were prepared with Polypyrrole (PPy) and Polyvinyl alcohol (PVA) polymers by solution-casting. The change in structure and chemical composition of samples was identified by XRD and FTIR respectively. The UV–visible spectroscopy demonstrates the optical characteristics and band gap properties of sample. The homogeneous morphology of sample for higher wt% of PTCDA was examined by atomic force microscopy (AFM). The differential scanning calorimetry (DSC) results demonstrate the decrease in melting temperature (Tm) and degree of crystallinity (χc%) of polymeric organic semiconductor. The mechanical property demonstrates the high tensile strength and improved plasticity nature. Impedance spectroscopy was evaluated to determine the conductivity response of polymeric organic semiconductor. The highest DC conductivity (2.08×10−3 S/m) was obtained for 10 wt% of PTCDA at 140 °C. The decrease in activation energy (Ea) represents the non-Debye process and was evaluated from the slope of ln σdc vs. 103/T plot.  相似文献   

8.
High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, XC of ~82% and are surrounded by a thin layer of SiOx. The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the XC to ~65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ~1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text.  相似文献   

9.
In this work we report on the optical properties of single-crystalline iron thin films. For this, Cr-capped Fe films with thickness, t, in the range 30–300 Å were prepared on MgO (0 0 1) by DC magnetron sputtering, and then studied by optical absorption technique within the range from 1.0 to 3.6 eV. All measurements were carried out at room temperature using a fiber optics spectrophotometer. The intensity of the transmitted light decreases with increasing film thickness. The optical constants of the films are deduced from a model that considers the transmission of light by two absorbing films on an absorbing substrate. The absorption coefficient of the Fe films is also calculated from the transmission data. The absorption spectra show the following characteristics: (i) two large absorption peaks centered at about 1.20 and 2.65 eV; and (ii) a sharp step near 1.40 eV. These structures are associated with conventional interband transitions of the iron film.  相似文献   

10.
Polycrystalline (Bi0.6K0.4) (Fe0.6Nb0.4)O3 material has been prepared using a mixed-oxide route at 950 °C. It was shown by XRD that at room temperature structure of the compound is of single-phase with hexagonal symmetry. Some electrical characteristics (impedance, modulus, conductivity etc.) were studied over a wide frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges. The Nyquist plot (i.e., imaginary vs real component of complex impedance) of the material exhibit the existence and magnitude of grain interior and grain boundary contributions in the complex electrical parameters of the material depending on frequency, input energy and temperature. The nature of frequency dependence of ac conductivity follows Joncher׳s power law, and dc conductivity follows the Arrhenius behavior. The appearance of PE hysteresis loop confirms the ferroelectric properties of the material with remnant polarization (2Pr) of 1.027 µC/cm2 and coercive field (2Ec) of 16.633 kV/cm. The material shows very weak ferromagnetism at room temperature with remnant magnetization (2Mr) of 0.035 emu/gm and coercive field (2Hc) of 0.211 kOe.  相似文献   

11.
Effects of the doping atom (O, Al, and (Al, O)) on structural and electronic properties of the monolayer WS2 have been studied by using first-principles calculations. Results show that the covalent character of W–S bonding has been enhanced after doping. Meanwhile, W–O, Al–S and W–S bonds of (Al, O) co-doped WS2 monolayer have higher covalent character compared with O-doped and Al-doped WS2 monolayer of this work. After doping with Al (or Al, O) atoms, Fermi level moves close to the valence band and the dopant atoms produce the defect energy levels, indicating that Al doped and (Al, O) co-doped WS2 monolayer both have p-type conductivity. O-doped and (Al, O) co-doped WS2 ultrathin films was prepared on Si substrates. Results of Raman spectra show the formation of the O-doped and (Al, O) co-doped WS2 films. Moreover, compared with the pure WS2, the approximate reduction of 0.43 eV and 0.46 eV for W 4f and S 2p in binding energy after (Al, O) co-doped shows that p-type doping of (Al, O) co-doped WS2 has been verified.  相似文献   

12.
Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200–2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.  相似文献   

13.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

14.
In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420–520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338–413 K) and frequency range (200 Hz–5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358–373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 K<T).The frequency dependence of ac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+s. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound.  相似文献   

15.
A novel PVA/CuI nanocomposite polymer electrolyte layer synthesized via the reduction of CuCl2 by NaI in an aqueous PVA solution. The as-prepared films were characterized by X-ray diffraction, scanning electron microscope, as well as impedance spectroscopy. The obtained results indicated the formation of hexagonal CuI nano particles of ≈55 nm sizes embedded in the PVA matrix. In addition, the study of dielectric parameters and conductivity of PVA/CuI nanocomposite in wide range of temperature and frequency are given and discussed. The frequency dependence of ac-conductivity suggests power law with an exponent 0.026 < s < 0.73 which predicts hopping of charge carriers. The bulk conductivity showed activation with temperature, significant values of activation energy are deduced and discussed. An average value of the energy gap width, 2.05 eV obtained using optical absorption in UV–visible spectra for PVA/CuI nanocomposite polymer electrolyte.  相似文献   

16.
Optical properties of nanocrystalline, LixV2O5·nH2O films (0<x<22 mol%), are explored in the present work. These films have been produced by the sol–gel technique (colloidal route), which was used for the preparation of high purity and homogeneity films. Optical measurements were carried out using a double-beam spectrophotometer. The optical constants such as refractive index n, the extinction coefficient k, absorption coefficient α, and optical band gap of the films material have been evaluated. The optical absorption coefficient was calculated from the measured normal reflectance, R, and transmittance, T, spectra. The optical spectra of all samples exhibited two distinct regions: at high energy, which suggests a direct forbidden transition with optical gap ranging from 1.75 to 2.0 eV and increases with increase in Li-content. On the other hand a second low-energy band suggests a direct allowed transition with optical gap ranging from 0.40 to 0.42 eV. The width of the localized states (band tail) Ee was also estimated for all samples. Additional calculations applying the real part of the optical dielectric function led to the evaluation of the charge carrier concentration and their effective mass.  相似文献   

17.
Thin films of 4-tricyanovinyl-N,N-diethylaniline (TCVA) were prepared by thermal evaporation technique. The spectral and the optical parameters have been investigated by using the spectrophotometric measurements of both transmittance and reflectance at normal incidence of light in the wavelength range 200–2500 nm. The effect of γ-irradiation on the optical parameters was investigated. It was observed that the increase in γ-irradiation dose caused an increase in the value of absorption index and a shift in the spectrum towards higher wavelengths. Therefore, the value of the optical band gap has decreased from 1.45 eV for as-deposited film to 1.39 eV for film exposed to γ-ray dose of 150 kGy and Urbach tail increased. On the other hand, the dispersion parameters of TCVA films were increased with the increase of the irradiation dose.  相似文献   

18.
Lead-based Pb0.97La0.02(Zn1/3Nb2/3)0.3(Zr0.53Ti0.47)0.7O3 (PLZnNZT) transparent ceramics with the addition of 2 wt% excess PbO were prepared by hot-pressing sintering method. The hot-pressing sintered PLZnNZT ceramics exhibit dense and large-grained microstructure, and perovskite structure with distorted cubic-like symmetry. The ceramics exhibit normal ferroelectric-like dielectric behavior with slightly diffused ferroelectric phase transition characteristic. The PLZnNZT ceramics exhibit fully developed, symmetric and saturated PE hysteresis loop and large piezoelectric constant d33, being 468 pC/N. The ceramics with 120 μm thickness exhibit maximum transmittance of 53% at 850 nm when Fresnel losses was not included, almost totally transparent in the mid IR region (2500–5600 nm), and low-lying optical band gap energy Eg of 3.23 eV. Three diffused Raman bands centering around 240 cm−1, 560 cm−1 and 750 cm−1 are observed by micro-Raman spectroscopy, which can be attributed to F2g [BO6] bending vibration, A1g [BO6] stretching vibration and “soft mode” mixed by the bending and stretching vibrations, respectively, confirming the normal ferroelectric-like characteristic.  相似文献   

19.
《Solid State Communications》2002,121(9-10):479-484
The optical conductivity of MgB2 has been determined on a dense polycrystalline sample in the spectral range 6 meV–4.6 eV using a combination of ellipsometric and normal incidence reflectivity measurements. σ1(ω) features a narrow Drude peak with anomalously small plasma frequency (1.4 eV) and a very broad ‘dome’ structure, which comprises the bulk of the low-energy spectral weight. This fact can be reconciled with the results of band structure calculations by assuming that charge carriers from the 2D σ-bands and the 3D π-bands have principally different impurity scattering rates and negligible interband scattering. This also explains a surprisingly small correlation between the defect concentration and Tc, expected for a two-gap superconductor. The large 3D carrier scattering rate suggests their proximity to the localization limit.  相似文献   

20.
CuxZn1 ? xS (x = 0, 0.25, 0.50, 0.75, 1) thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The copper concentration (x) effect on the structural, morphological and optical properties of CuxZn1 ? xS thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing copper concentration. The energy bandgap values were changed from 2.07 to 3.67 eV depending on the copper concentration. The refractive index (n), optical static and high frequency dielectric constants (εo, ε) values were calculated by using the energy bandgap values as a function of the copper concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号