首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution.  相似文献   

2.
A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure.  相似文献   

3.
(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.  相似文献   

4.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the transcis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The 15N NMR data for 105 complexes of Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with simple azines such as pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2'-terpyridine and their alkyl or aryl derivatives have been reviewed. The 15N NMR coordination shifts, i.e. the differences between the 15N chemical shifts of the same nitrogen in the molecules of the complex and the ligand (Delta(15N) (coord) = delta(15N) (compl)--delta(15N) (lig)), have been related to some structural features of the reviewed coordination compounds, like the type of the central ion and the character of auxiliary ligands (mainly in trans position). These Delta(15N) (coord) parameters are negative, their absolute magnitudes (ca 30-150 ppm) generally increasing in the metal order Au(III) < Pd(II) < Pt(II) and Rh(III) < Co(III) < Pt(IV) < Ir(III), as well as with the enhanced trans influence of the other donor atoms (H, C < Cl < N).  相似文献   

6.
The crystal and molecular structure of potassium aquapentachloroiridate(III) (K2[Ir(H2O)Cl5]) was reported. The [Ir(H2O)Cl5]2− anions are nearly octahedral, the axial Ir–Cl bond (2.322(2) Å) being shorter than the equatorial ones (2.346(2)–2.360(2) Å); the Ir–O bond length is 2.090(4) Å. Ir(III) chloride complexes with 2,2′-bipyridine (LL = bpy) or 1,10-phenanthroline (LL = phen), of the general formulae K[Ir(LL)Cl4] and cis-[Ir(LL)2Cl2]Cl, were studied by far-IR and 1H–13C, 1H–15N HMBC/HMQC/HSQC–NMR. High-frequency 1H NMR coordination shifts (Δ1Hcoord = δ1Hcomplex − δ1Hligand; max. ca. +1 ppm) were noted for [Ir(LL)Cl4] anions, while for cis-[Ir(LL)2Cl2]+ cations they had variable sign and magnitude (max. ca. ±1 ppm); they were dependent on the proton position, being mostly expressed for the nitrogen-adjacent hydrogens (H(6) for bpy, H(2) for phen). 13C NMR signals were high-frequency shifted (by max. ca. 8 ppm), whereas all 15N nuclei were shifted to the lower frequency (by ca. 105–120 ppm). The experimental 1H, 13C, 15N NMR chemical shifts were reproduced by semi-empirical quantum-chemical calculations (B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*).  相似文献   

7.
Au(III), Co(III) and Rh(III) chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) of the general formulae [M1LCl3], trans-[M2L4Cl2]+, mer-[M2L3Cl3], [M1(LL)Cl2]+, cis-[M2(LL)2Cl2]+, where M1=Au; M2=Co, Rh; L=py; LL=bpy, phen, were studied by 1H--13C HMBC and 1H--15N HMQC/HSQC. The 1H, 13C and 15N coordination shifts (the latter from ca-78 to ca-107 ppm) are discussed in relation to the type of metal, electron configuration, coordination sphere geometry and the type of ligand. The 13C and 15N chemical shifts were also calculated by quantum-chemical NMR methods, which reproduced well the experimental tendencies concerning the coordination sphere geometry and the ligand type.  相似文献   

8.
Adduct formations of rhodium(II) tetraacetate and tetratrifluoroacetate with some 1H-imidazoles, oxazoles, thiazoles, 1H-pyrazoles and isoxazole have been investigated by the use of 1H, 13C, 15N NMR and electronic absorption spectroscopy (VIS) in the visible range. Azoles tend to form axial adducts containing rhodium(II) tetraacylates bonded via nitrogen atom. Bulky substituents close to the nitrogen atom prevent the Rh--N bond formation, and in several cases switch over the binding site to the oxygen or sulphur atoms. The (15)N adduct formation shift Deltadelta(15N) (Deltadelta = delta(adduct) - delta(ligand)) varied from ca - 40 to - 70 ppm for the nitrogen atom involved in complexation, and of a few parts per million only, from ca - 6 to 3 ppm, for the non-bonded nitrogen atom within the same molecule. The Deltadelta(1H) values do not exceed one ppm; Deltadelta(13C) ranges from - 1 to 6 ppm. Various complexation modes have been proved by electronic absorption spectroscopy in the visible region (VIS). For comparison purposes, some adducts of pyridine, thiophene and furan derivatives have been measured as well. The experimental findings were compared with calculated chemical shifts, obtained by means of DFT B3LYP method, using 6-311 + G(2d,p), 6-31(d)/LanL2DZ and 6-311G(d,p) basis set.  相似文献   

9.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Zinc(II), cadmium(II) and mercury(II) complexes of thiourea (TU) and selenourea (SeU) of general formula M(TU)2Cl2 or M(SeU)2Cl2 have been prepared. The complexes were characterized by elemental analysis and NMR (1H, 13C, 15N, 77Se and 113Cd) spectroscopy. A low-frequency shift of the C=S resonance of thiones in 13C NMR and high-frequency shifts of N–H resonances in 1H and 15N NMR are consistent with sulfur or selenium coordination to the metal ions. The Se nucleus in Cd(SeU)2Cl2 in 77Se NMR is deshielded by 87?ppm on coordination, relative to the free ligand. In comparison, the analogous Zn(II) and Hg(II) complexes show deshielding by 33 and 50?ppm, respectively, indicating that the orbital overlap of Se with Cd is better. Principal components of 77Se and 113Cd shielding tensors were determined from solid-state NMR data.  相似文献   

11.
1H, 13C and 15N NMR studies of iron(II), ruthenium(II) and osmium(II) tris‐chelated cationic complexes with 2,2′‐bipyridine and 1,10‐phenanthroline of the general formula [M(LL)3]2+ (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature 1H signal assignments were corrected. Significant shielding of nitrogen‐adjacent protons [H(6) in bpy, H(2) in phen] and metal‐bonded nitrogens was observed, being enhanced in the series Ru(II) → Os(II) → Fe(II) for 1H, Fe(II) → Ru(II) → Os(II) for 15N and bpy → phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) → Os(II) → Fe(II). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   

15.
The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data.  相似文献   

16.
The ligands D((CH(2))(2)NHPiPr(2))(2) (D = NH 1, S 2) react with (dme)NiCl(2) or (PhCN)(2)MCl(2) (M = Pd, Pt) to give complexes of the form [D((CH(2))(2)NHPiPr(2))(2)MX]X (X = Cl, I; M = Ni, Pd, Pt) which were converted to corresponding iodide derivatives by reaction with Me(3)SiI. Reaction of 1 or 2 with (COD)PdMeCl affords facile routes to [κ(3)P,N,P-NH((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (8a) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (9a) in high yields. An alternative synthetic approach involves oxidative addition of MeI to a M(0) precursor yielding [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)NiMe]I (10), [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 8b Pt 11) and [κ(3)P,S,P-S(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 9b, Pt 12). Alternatively, use of NEt(3)HCl in place of MeI produces the species [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MH]X (X = Cl, M = Ni 13a, Pd 14a, Pt 16a). The analogs containing 2; [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)MH]X (M = Pd, X = PF(6)15: M = Pt, X = Br, 17a, PF(6)17b) were also prepared in yields ranging from 74-93%. In addition, aryl halide oxidative addition was also employed to prepare [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MC(6)H(4)F]Cl (M = Ni 18, Pd 19) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)Pd(C(6)H(4)F)]Cl (20). Crystal structures of 3a, 4a, 5a, 6a, 8a, 9a, 14b and 16b are reported.  相似文献   

17.
Pd(ii) and Pt(ii) chloride complexes with LL = methyl cis-3,4-diamino-2,3,4,6-tetradeoxy-alpha-l-lyxo-hexopyranoside of the formulae [Pd(LL)Cl(2)] and [Pt(LL)Cl(2)], , were studied by (1)H, (2)H, (13)C, (15)N and (195)Pt NMR spectroscopy. These techniques were applied for characterization of the structure and ligand exchange dynamics, in case of diastereomeric species formed from in DMSO-d(6), DMSO-h(6) and H(2)O; their general formula was [Pt(LL)XY](+) (X = Cl, Y = DMSO-d(6), ; X = DMSO-d(6), Y = Cl, ; X = Cl, Y = DMSO-h(6), '; X = DMSO-h(6), Y = Cl, '; X = Cl, Y = H(2)O, ; X = H(2)O, Y = Cl, ). Their theoretical structures and NMR parameters, calculated at the level of DFT approach, were also presented and compared to the experimental data. The model complex [Pt(trans-diaminocyclohexane)Cl(2)], , was studied as well. To the best of our knowledge, this work is the first account dealing with the detailed analysis of structure and dynamics of ligand exchange processes in organic solvents and water, performed for a PtCl(2) complex containing a diaminosugar moiety. The kinetic behavior of the studied coordination compounds suggests that some of them may be potentially active in bioassays against cancer cells. Compound exhibits noticeable versatile ligand exchange possibilities in DMSO and H(2)O. Particularly, it undergoes solvolysis in DMSO-d(6), exchanging one chloride atom and yielding two diastereomers and ; the former, being the kinetically favored species, has the DMSO-d(6) ligand syn to the N(3) atom. The lyophilisate of the respective + mixture, earlier equilibrated in DMSO-d(6), after dissolving in H(2)O yields only the latter isomer, which is thermodynamically favored. The solvolysis of in H(2)O yields instantaneously two diastereomeric monoaquated species, and , amounting to 10% of each.  相似文献   

18.
The vibrational spectra of methionine and histidine-containing palladium (II) and platinum (II) complexes, cis-M(Met)X2 and cis-M(His)X2 (M = Pd and Pt; X = F, Cl, Br and I; Met = methionine, His = histidine), have been systematically investigated by ab initio Restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The geometries of cis-Pd(Met)Cl2, cis-Pt(Met)Cl2, cis-Pd(His)Cl2 and cis-Pt(His)I2 optimized and vibrational frequencies and IR intensities of cis-M(Met)Cl2 and cis-M(His)Cl2 (M = Pd and Pt) calculated are evaluated via comparison with the experimental values. The vibrational frequencies calculated show that the methods, rather than basis sets, affect the accuracy of the calculation. The best results that can reproduce the experimental ones are obtained at B3LYP level without any scale factor used. The vibrational frequencies of cis-M(Met)X2 and cis-M(His)X2 (M = Pd and Pt; X = F, Br and I) that have not yet been experimentally reported are predicted.  相似文献   

19.
The complexes [Pd(phen)(aa)]Cl.3H2O, where phen is 1,10-phenanthroline and aa is the anion of glycine (gly), .DL-alanine (ala), DL-serine (ser) or DL-asparagine (asn), were synthesized and characterized by spectroscopies. The NMR signals were assigned completely on the basis of the double irradiation, 1H-1H COSY and 1H-13C COSY techniques. In the 1H NMR spectra of phen in the complexes, the signals of 2-H and 9-H show upfield shifts 0.8-1 ppm, while the signals of 4-H and 3-H show downfield shifts or almost no shift, as compared to the free phen ligand, and the signal of 4-H appears in the lowest field. The signals of ring B which is trans to the carboxyl group show significant upfield shifts as compared to those of ring A. The probable structures were described on the basis of a metal-non-bonded hydrogen interaction, trons effect and ligand-ligand interaction. There may exist three conformation isomers in the [Pd(phen)(asn)]Cl.3H2O complex at room temperature. The preferred conformation isomer is about  相似文献   

20.
1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4‐phenylpyridine, 4ppy; 3‐phenylpyridine, 3ppy; and 2‐phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans‐/cis‐[Pd(PPY)2Cl2] and trans‐/cis‐[Pt(PPY)2Cl2] were performed and the respective chemical shifts (δ, δ and δ) reported. 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: , , ) were discussed in relation to the type of the central atom (Au(III), Pd(II) and Pt(II)), geometry (trans‐/cis‐) and the position of a phenyl group in the pyridine ring system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号