首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

2.
We report a detailed study of the reactions of the Ti?NNCPh2 alkylidene hydrazide functional group in [Cp*Ti{MeC(NiPr)2}(NNCPh2)] ( 8 ) with a variety of unsaturated and saturated substrates. Compound 8 was prepared from [Cp*Ti{MeC(NiPr)2}(NtBu)] and Ph2CNNH2. DFT calculations were used to determine the nature of the bonding for the Ti?NNCPh2 moiety in 8 and in the previously reported [Cp2Ti(NNCPh2)(PMe3)]. Reaction of 8 with CO2 gave dimeric [(Cp*Ti{MeC(NiPr)2}{μ‐OC(NNCPh2)O})2] and the “double‐insertion” dicarboxylate species [Cp*Ti‐{MeC(NiPr)2}{OC(O)N(NCPh2)C(O)O}] through an initial [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(O)O}], the congener of which could be isolated in the corresponding reaction with CS2. The reaction with isocyanates or isothiocyanates tBuNCO or ArNCE (Ar=Tol or 2,6‐C6H3iPr2; E=O, S) gave either complete NNCPh2 transfer, [2+2] cycloaddition to Ti?Nα or single‐ or double‐substrate insertion into the Ti?Nα bond. The treatment of 8 with isonitriles RNC (R=tBu or Xyl) formed σ‐adducts [Cp*Ti{MeC(NiPr)2}(NNCPh2)(CNR)]. With ArF5CCH (ArF5=C6F5) the [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(ArF5)C(H)}] was formed, whereas with benzonitriles ArCN (Ar=Ph or ArF5) two equivalents of substrate were coupled in a head‐to‐tail manner across the Ti?Nα bond to form [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(Ar)NC(Ar)N}]. Treatment of 8 with RSiH3 (R=aryl or Bu) or Ph2SiH2 gave [Cp*Ti{MeC(NiPr)2}{N(SiHRR′)N(CHPh2)}] (R′=H or Ph) through net 1,3‐addition of Si? H to the N? N?CPh2 linkage of 8 , whereas reaction with PhSiH2X (X=Cl, Br) led to the Ti?Nα 1,2‐addition products [Cp*Ti{MeC(NiPr)2}(X){N(NCPh2)SiH2Ph}].  相似文献   

3.
Addition of one equivalent of LiN(i-Pr)2 or LiN(CH2)5 to carbodiimides, RN=C=NR [R=cyclohexyl (Cy), isopropyl (i-Pr)], generated the corresponding lithium of tetrasubstituted guanidinates {Li[RNC(N R^′2)NR](THF)}2 [R=i-Pr, N R^′2=N(i-Pr)2 (1), N(CH2)5 (2); R=Cy, N R^′2=N(i-Pr)2 (3), N(CH2)5 (4)]. Treatment of ZrCl4 with freshly prepared solutions of their lithium guanidinates provided a series of bis(guanidinate) complexes of Zr with the general formula Zr[RNC(N R^′2)NR]2Cl2 [R=i-Pr, N R^′2=N(i-Pr)2 (5), N(CH2)5 (6); R=Cy, N R^′2=N(i-Pr)2 (7), N(CH2)5 (8)]. Complexes 1, 2, 5-8 were characterized by elemental analysis, IR and ^1H NMR spectra. The molecular structures of complexes 1, 7 and 8 were further determined by X-ray diffraction studies.  相似文献   

4.
A series of new alkynylamidinate complexes of selected first and second row transition metals has been synthesized and fully characterized. Treatment of MCl2 precursors (M=Mn, Fe, Co) with 2 equiv. of the lithium alkynylamidinates Li[c-C3H5−C≡C−C(NR′)2] ⋅ THF (R′=iPr (2), Cy (cyclohexyl) ( 2 )) afforded a series of binuclear complexes of the type M2[c-C3H5−C≡C−C(NR)2NN′]2[c-C3H5−C≡C−C(NR)22N,N′]2 ( 3 : M=Mn, R=Cy; 4 a : M=Fe, R=iPr; 4 b : M=Fe, R=Cy; 5 : M=Co, R=iPr) with no significant metal-metal bonding. In marked contrast, a similar reaction of CrCl2 with 2 equiv. of 1 afforded the homoleptic dinuclear chromium(II) complex Cr2[c-C3H5−C≡C−C(NiPr)2NN′]4 ( 6 ) which supposedly comprises a Cr−Cr quadruple bond. Complex 6 could also be prepared in a more rational way and in better yield (61 %) by using dichromium(II) tetraacetate, Cr2(OAc)4, as starting material. Related reactions employing dimolybdenum(II) tetraacetate, Mo2(OAc)4, and 2 or 3 equiv. of 1 afforded the mixed-ligand paddle wheel-type complexes trans-Mo2(OAc-κOO′)2([c-C3H5−C≡C−C(NiPr)2NN′]2 ( 7 ) and Mo2(OAc-κOO′)([c-C3H5−C≡C−C(NiPr)2NN′]3 ( 8 ). All title compounds were structurally characterized through single-crystal X-ray diffraction and spectroscopic techniques (NMR, IR, Raman).  相似文献   

5.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

6.
A series of iridium tetrahydride complexes [Ir(H)4(PSiP‐R)] bearing a tridentate pincer‐type bis(phosphino)silyl ligand ([{2‐(R2P)C6H4}2MeSi], PSiP‐R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP‐R)] with Me4N ⋅ BH4 under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)–dinitrogen complexes, [Ir(H)2(N2)(PSiP‐R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively. Attempted substitution of the dinitrogen ligand in [Ir(H)2(N2)(PSiP‐Cy)] with PMe3 required heating at 150 °C to give the expected [Ir(H)2(PMe3)(PSiP‐Cy)] and a trigonal bipyramidal iridium(I)–dinitrogen complex, [Ir(N2)(PMe3)(PSiP‐Cy)]. The reaction of [Ir(H)4(PSiP‐Cy)] with three equivalents of 2‐norbornene (nbe) in benzene afforded [IrI(nbe)(PSiP‐Cy)] in a high yield, while a similar reaction of [Ir(H)4(PSiP‐R)] with an excess of 3,3‐dimethylbutene (tbe) in benzene gave the C H bond activation product, [IrIII(H)(Ph)(PSiP‐R)], in high yield. The oxidative addition of benzene is reversible; heating [IrIII(H)(Ph)(PSiP‐Cy)] in the presence of PPh3 in benzene resulted in reductive elimination of benzene, coordination of PPh3, and activation of the C H bond of one aromatic ring in PPh3. [IrIII(H)(Ph)(PSiP‐R)] catalyzed a direct borylation reaction of the benzene C H bond with bis(pinacolato)diboron. Molecular structures of most of the new complexes in this study were determined by a single‐crystal X‐ray analysis.  相似文献   

7.
The generation of heavier double‐bond systems without by‐ or side‐product formation is of considerable importance for their application in synthesis. Peripheral functional groups in such alkene homologues are promising in this regard owing to their inherent mobility. Depending on the steric demand of the N‐alkyl substituent R, the reaction of disilenide Ar2Si?Si(Ar)Li (Ar=2,4,6‐iPr3C6H2) with ClP(NR2)2 either affords the phosphinodisilene Ar2Si?Si(Ar)P(NR2)2 (for R=iPr) or P‐amino functionalized phosphasilenes Ar2(R2N)Si? Si(Ar)?P(NR2) (for R=Et, Me) by 1,3‐migration of one of the amino groups. In case of R=Me, upon addition of one equivalent of tert‐butylisonitrile a second amino group shift occurs to yield the 1‐aza‐3‐phosphaallene Ar2(R2N)Si? Si(NR2)(Ar)? P?C?NtBu with pronounced ylidic character. All new compounds were fully characterized by multinuclear NMR spectroscopy as well as single‐crystal X‐ray diffraction and DFT calculations in selected cases.  相似文献   

8.
A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2. X-ray diffraction studies provided structural snapshots of the sequence of reactions involved in the process. At low temperature, we observed the initial formation of the unprecedented σ-BH complexes [Pt(HBR2)(ItBuiPr′)(ItBuiPr)][BArF], one of which has been isolated. From −15 to +10 °C, the σ-BH species undergo a carbon–boron coupling process leading to the platinum hydride derivative [Pt(H)(ItBuiPr–BR2)(ItBuiPr)][BArF], 4. Surprisingly, these compounds are thermally unstable undergoing carbon–boron bond cleavage at room temperature that results in the 14-electron Pt(ii) boryl species [Pt(BR2)(ItBuiPr)2][BArF], 2. This unusual reaction process has been corroborated by computational methods, which indicate that the carbon–boron coupling products 4 are formed under kinetic control whereas the platinum boryl species 2, arising from competitive C–H bond coupling, are thermodynamically more stable. These findings provide valuable information about the factors governing productive carbon–boron coupling reactions at transition metal centers.

A reversible carbon–boron bond formation has been observed in the reaction of the coordinatively unsaturated, cyclometalated, Pt(ii) complex [Pt(ItBuiPr′)(ItBuiPr)][BArF], 1, with tricoordinated boranes HBR2.  相似文献   

9.
Two new lanthanide amidate complexes, {Gd2[Cy(NCO)iPr]6} (1) and {La2[Cy(NCO)iPr]6[Cy(HNCO)iPr]} (2) (iPr = isopropyl, Cy = cyclohexyl), have been synthesized in good yields by silylamine elimination reaction between Gd[N(SiMe3)2]3 or La[N(SiMe3)2]3 and N-(cyclohexyl)isopropyl amide. Complexes 1 and 2 have been characterized by NMR, elemental analyzes, and X-ray diffraction. The molecular structures of {[Cy(NCO)iPr]Gd[μ2-Cy(NCO)iPr]3Gd[Cy(NCO)iPr]2} (1) and {[Cy(NCO)iPr]La[μ2-Cy(NCO)iPr]3La[Cy(NCO)iPr]2[Cy(HNCO)iPr]} (2) exhibit a dimer structure with three μ2-O bridging bonds that look like a windmill. Additionally, 2 formed an intramolecular N–H···O hydrogen bond via a neutral amide. The catalytic properties of 1 and 2 for ring-opening polymerization (ROP) of ε-caprolactone have been studied. The results show that 1 and 2 are efficient catalysts for the ROP of ε-caprolactone.  相似文献   

10.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

11.
The coordination chemistry of the 1,2‐BN‐cyclohexanes 2,2‐R2‐1,2‐B,N‐C4H10 (R2=HH, MeH, Me2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid‐state (X‐ray diffraction) characterization of [Ir(PCy3)2(H)22η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH) and [Rh(iPr2PCH2CH2CH2PiPr2)(η2η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH, NMe2). For NR2=NH2 subsequent metal‐promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4H8]3, via amino‐borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2=NMeH the final product is the cyclic amino‐borane HBNMeC4H8. The mechanism of dehydrogenation of 2,2‐H,Me‐1,2‐B,N‐C4H10 using the {Rh(iPr2PCH2CH2CH2PiPr2)}+ catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2(iPr2PCH2CH2CH2PiPr2)2H5][BArF4]. Using the initial rate method starting from this dimer, a first‐order relationship to [amine‐borane], but half‐order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating.  相似文献   

12.
Reaction of bis(diisopropylamino)(methylamino)borane, (NHiPr)2B(NHMe), with 2,4,6‐trichloroborazine (ClBNH)3 affords 2,4,6‐tri[bis(diisopropylamino)boryl(methylamino)]borazine, 2,4,6‐[(NiPr2)2B(Me)N]3B3N3H3, which is the first boryl‐borazine structurally characterized. According to the X‐ray single crystal structure and the chemical shifts of 11B NMR resonances of boron atoms, compared with the aminoborane and borazine analogs, the borazine and boryl π‐systems are not coplanar either in the solid state or in organic solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B?NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis.  相似文献   

14.
Reaction of [U(TrenTIPS)(THF)][BPh4] ( 1 ; TrenTIPS=N{CH2CH2NSi(iPr)3}3) with NaPH2 afforded the novel f‐block terminal parent phosphide complex [U(TrenTIPS)(PH2)] ( 2 ; U–P=2.883(2) Å). Treatment of 2 with one equivalent of KCH2C6H5 and two equivalents of benzo‐15‐crown‐5 ether (B15C5) afforded the unprecedented metal‐stabilized terminal parent phosphinidene complex [U(TrenTIPS)(PH)][K(B15C5)2] ( 4 ; U?P=2.613(2) Å). DFT calculations reveal a polarized‐covalent U?P bond with a Mayer bond order of 1.92.  相似文献   

15.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

16.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

17.
In order to explore the existence of α‐effect in gas‐phase SN2@N reactions, and to compare its similarity and difference with its counterpart in SN2@C reactions, we have carried out a theoretical study on the reactivity of six α‐oxy‐Nus (FO?, ClO?, BrO?, HOO?, HSO?, H2NO?) in the SN2 reactions toward NR2Cl (R = H, Me) and RCl (R = Me, i‐Pr) using the G2(+)M theory. An enhanced reactivity induced by the α‐atom is found in all examined systems. The magnitude of the α‐effect in the reactions of NR2Cl (R = H, Me) is generally smaller than that in the corresponding SN2 reaction, but their variation trend with the identity of α‐atom is very similar. The origin of the α‐effect of the SN2@N reactions is discussed in terms of activation strain analysis and thermodynamic analysis, indicating that the α‐effect in the SN2@N reactions largely arises from transition state stabilization, and the “hyper‐reactivity” of these α‐Nus is also accompanied by an enhanced thermodynamic stability of products from the n(N) → σ*(O?Y) negative hyperconjugation. Meanwhile, it is found that the reactivity of oxy‐Nus in the SN2 reactions toward NMe2Cl is lower than toward i‐PrCl, which is different from previous experiments, that is, the SN2 reactions of NH2Cl is more facile than MeCl. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Oxidative addition of aryl bromides to 12‐electron [Rh(PiBu3)2][BArF4] (ArF=3,5‐(CF3)2C6H3) forms a variety of products. With p‐tolyl bromides, RhIII dimeric complexes result [Rh(PiBu3)2(o/p‐MeC6H4)(μ‐Br)]2[BArF4]2. Similarly, reaction with p‐ClC6H4Br gives [Rh(PiBu3)2(p‐ClC6H4)(μ‐Br)]2[BArF4]2. In contrast, the use of o‐BrC6H4Me leads to a product in which toluene has been eliminated and an isobutyl phosphine has undergone C? H activation: [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2. Trapping experiments with ortho‐bromo anisole or ortho‐bromo thioanisole indicate that a possible intermediate for this process is a low‐coordinate RhIII complex that then undergoes C? H activation. The anisole and thioanisole complexes have been isolated and their structures show OMe or SMe interactions with the metal centre alongside supporting agostic interactions, [Rh(PiBu3)2(C6H4O Me)Br][BArF4] (the solid‐state structure of the 5‐methyl substituted analogue is reported) and [Rh(PiBu3)2(C6H4S Me)Br][BArF4]. The anisole‐derived complex proceeds to give [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2, whereas the thioanisole complex is unreactive. The isolation of [Rh(PiBu3)2(C6H4O Me)Br][BArF4] and its onward reactivity to give the products of C? H activation and aryl elimination suggest that it is implicated on the pathway of a σ‐bond metathesis reaction, a hypothesis strengthened by DFT calculations. Calculations also suggest that C? H bond cleavage through phosphine‐assisted deprotonation of a non‐agostic bond is also competitive, although the subsequent protonation of the aryl ligand is too high in energy to account for product formation. C? H activation through oxidative addition is also ruled out on the basis of these calculations. These new complexes have been characterised by solution NMR/ESIMS techniques and in the solid‐state by X‐ray crystallography.  相似文献   

19.
Treatment of N,N‐chelated germylene [(iPr)2NB(N‐2,6‐Me2C6H3)2]Ge ( 1 ) with ferrocenyl alkynes containing carbonyl functionalities, FcC≡CC(O)R, resulted in [2+2+2] cyclization and formation of the respective ferrocenylated 3‐Fc‐4‐C(O)R‐1,2‐digermacyclobut‐3‐enes 2 – 4 [R = Me ( 2 ), OEt ( 3 ) and NMe2 ( 4 )] bearing intact carbonyl substituents. In contrast, the reaction between 1 and PhC(O)C≡CC(O)Ph led to activation of both C≡C and C=O bonds producing bicyclic compound containing two five‐membered 1‐germa‐2‐oxacyclopent‐3‐ene rings sharing one C–C bond, 4,8‐diphenyl‐3,7‐dioxa‐2,6‐digermabicyclo[3.3.0]octa‐4,8‐diene ( 5 ). With N‐methylmaleimide containing an analogous C(O)CH=CHC(O) fragment, germylene 1 reacted under [2+2+2] cyclization involving the C=C double bond, producing 1,2‐digermacyclobutane 6 with unchanged carbonyl moieties. Finally, 1 selectively added to the terminal double bond in allenes CH2=C=CRR′ giving rise to 3‐(=CRR′)‐1,2‐digermacyclobutanes [R/R′ = Me/Me ( 7 ), H/OMe ( 8 )] bearing an exo‐C=C double bond. All compounds were characterized by 1H, 13C{1H} NMR, IR and Raman spectroscopy and the molecular structures of 3 , 4 , 5 , and 8 were established by single‐crystal X‐ray diffraction analysis. The redox behavior of ferrocenylated derivatives 2 – 4 was studied by cyclic voltammetry.  相似文献   

20.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号