首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   

2.
Although the role of intermolecular aromatic π–π interactions in the self‐assembly of di‐l ‐phenylalanine (l ‐Phe‐l ‐Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π–π interactions on the morphology of the self‐assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π–π interactions is investigated for FF and analogous alanine (Ala)‐containing dipeptides, namely, l ‐Phe‐l ‐Ala (FA) and l ‐Ala‐l ‐Phe (AF). The results reveal that these dipeptides not only form self‐assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π–π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side‐chain interactions (aromatic–aliphatic or aliphatic–aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self‐assembled structure. The current results emphasise that intramolecular aromatic π–π interaction may not be essential to induce self‐assembly in smaller peptides, and π (aromatic)–alkyl or alkyl–π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self‐assembled structures.  相似文献   

3.
Fluorescein‐, benzothiazole‐, quinoline‐, stilbene‐, and carbazole‐containing fluorescent gelators have been synthesized by connecting gelation‐driving segments, including l ‐isoleucine, l ‐valine, l ‐phenylalanine, l ‐leucine residue, cyclo(l ‐asparaginyl‐l ‐phenylalanyl), and trans‐(1R,2R)‐diaminocyclohexane. The emission behaviors of the gelators were investigated, and their gelation abilities studied against 15 solvents. The minimum gel concentration, variable‐temperature spectroscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy (FM), and confocal laser scanning microscopy (CLSM) were used to characterize gelation. The intermolecular hydrogen bonding between the N?H and C=O of amide, van der Waals interactions and π–π stacking play important roles in gelation. The colors of emission are related to the fluorescence structures of gelators. Fibrous aggregates characterized by the color of their emission were observed by FM. 3D images are produced by the superposition of images captured by CLSM every 0.1 μm to a settled depth. The 3D images show that the large micrometer‐sized aggregates spread out three dimensionally. FM observations of mixed gelators are studied. In the case of gelation, two structurally related gelators with the same gelation‐driving segment lead to the gelators build up of the same aggregates through similar hydrogen‐bonding patterns. When two gelators with structurally different gelation‐driving segments induce gelation, the gelators build up each aggregate through individual hydrogen‐bonding patterns. A fluorescent reagent that was incorporated into the aggregates of gels through van der Waals interactions was developed. The addition of this fluorescent reagent enables the successful observation of nonfluorescent gelators’ aggregates by FM.  相似文献   

4.
A family of four self‐assembling lipopeptides containing Ala‐Lys peptides attached to a C16 aliphatic chain were synthesised. These compounds form two enantiomeric pairs that bear a diastereomeric relationship to one another (C16‐l ‐Ala‐l ‐Lys/C16‐d ‐Ala‐d ‐Lys) and (C16‐d ‐Ala‐l ‐Lys/C16‐l ‐Ala‐d ‐Lys). These diastereomeric pairs have very different critical micelle concentrations (CMCs). The self‐assembled multivalent (SAMul) systems bind biological polyanions as a result of the cationic lysine groups on their surfaces. For heparin binding, there was no significant enantioselectivity, but there was a binding preference for the diastereomeric assemblies with lower CMCs. Conversely, for DNA binding, there was significant enantioselectivity for systems displaying d ‐lysine ligands, with a further slight preference for attachment to l ‐alanine, with the CMC being irrelevant.  相似文献   

5.
A series of newly synthesized dicyanoplatinum(II) 2,2′‐bipyridine complexes exhibits self‐assembly properties in solution after the incorporation of the l ‐valine amino units appended with various hydrophobic motifs. These l ‐valine‐derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature‐dependent studies. On the other hand, systematic transformation from less uniform aggregates to well‐defined fibrous and rod‐like structures via Pt???Pt and π–π stacking interactions has also been observed in the mixed‐solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.  相似文献   

6.
Herein, we describe the role of end functional groups in the self‐assembly of amide‐functionalized oligo(p‐phenylenevinylene) (OPV) gelators with different end‐groups. The interplay between hydrogen‐bonding and π‐stacking interactions was controlled by the bulkiness of the end functional groups, thereby resulting in aggregates of different types, which led to the gelation of a wide range of solvents. The variable‐temperature UV/Vis absorption and fluorescence spectroscopic features of gelators with small end‐groups revealed the formation of 1D H‐type aggregates in CHCl3. However, under fast cooling in toluene, 1D H‐type aggregates were formed, whereas slow cooling resulted in 2D H‐type aggregates. OPV amide with bulky dendritic end‐group formed hydrogen‐bonded random aggregates in toluene and a morphology transition from vesicles into fibrous aggregates was observed in THF. Interestingly, the presence of bulky end‐group enhanced fluorescence in the xerogel state and aggregation in polar solvents. The difference between the aggregation properties of OPV amides with small and bulky end‐groups allowed the preparation of self‐assembled structures with distinct morphological and optical features.  相似文献   

7.
An L ‐phenylalanine derivative ( C12PhBPCP ) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self‐assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self‐assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H‐aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self‐assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.  相似文献   

8.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

9.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   

10.
A series of new π‐conjugated gelators that contain various aromatic rings (phenyl, naphthyl, 9‐anthryl) and amphiphilic L ‐glutamide was designed, and their gel formation in organic solvents and self‐assembled nanostructures was investigated. The gelators showed good gelation ability in various organic solvents that ranged from polar to nonpolar. Those gelator molecules with small rings such as phenyl and naphthyl self‐assembled into nanotube structures in most organic solvents and showed strong blue emission. However, the 9‐anthryl derivative formed only a nanofiber structure in any organic solvent, probably owing to the larger steric hindrance. All of these gels showed enhanced fluorescence in organogels. Furthermore, during the gel formation, the chirality at the L ‐glutamide moiety was transferred to the nanostructures, thus leading to the formation of chiral nanotubes. One of the nanotubes showed chiral recognition toward the chiral amines.  相似文献   

11.
A novel flow injection electrochemiluminescence method combined with molecularly imprinted solid‐phase extraction was developed for the determination of L ‐phenylalanine, in which was used as the luminophor and indium tin oxide glass was modified as the working electrode. Molecularly imprinted polymers, synthesized by self‐assembly with functional monomer and crossing linker, were used for the selective extraction of L ‐phenylalanine. In order to overcome the drawbacks of traditional electrochemiluminescence cells such as high IR drop, high over‐potential and so on, a novel electrochemiluminescence cell was developed. The enhanced electrochemiluminescence intensity was linearly related with the concentration of L ‐phenylalanine in the range from 1.0×10?7 to 5.0×10?5 g/mL with a detection limit of 2.59×10?8 g/mL. The relative standard deviation for the determination of 1.0×10?6 g/mL L ‐phenylalanine was 1.2% (n=11). The method showed higher sensitivity and good repeatability, and was successfully applied for the determination of L ‐phenylalanine in egg white, chicken and serum samples. A possible mechanism for the enhanced electrochemiluminescence response on indium tin oxide glass is proposed.  相似文献   

12.
New poly(dimethylsiloxane)‐based polymer organogelators with L ‐lysine derivatives were synthesized on the basis of synthetically simple procedure, and their organogelation abilities were investigated. These polymer organogelators have a good organogelation ability and form organogels in many organic solvents. In the organogels, polymer gelators constructed a mesoporous structure with a pore size of about 1 μm formed by entanglement of the self‐assembled nanofibers. The L ‐lysine derivatives in the polymer gelators functioned as a gelation‐causing segment and the organogelation was induced by self‐assembly of the L ‐lysine segments through a hydrogen bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3817–3824, 2006  相似文献   

13.
The interaction of PEGylated poly(amino acid)s with their biological targets depends on their chemical nature and spatial arrangement of their building blocks. The synthesis, self‐assembly, and DNA complexation of ABC terblock copolymers consisting of poly(ethylene glycol), (PEG), poly(l ‐lysine), and poly(l ‐leucine), are reported. Block copolymers are produced by a metal‐free, living ring‐opening polymerization of respective amino acid N‐carboxyanhydrides using amino‐terminated PEG as macroinitiator: (PEG‐b‐p(l ‐Lys)xb‐p(l ‐Leu)y, PEG‐b‐p(l ‐Leu)xb‐p(l ‐Lys)y, and PEG‐b‐p((l ‐Lys)xco‐p(l ‐Leu)y). Sizes of self‐assembled nanoparticles depend on the formation method. The nanoprecipitation method proves useful for copolymers with the poly(l ‐lysine) block protected as trifluoroacetate, effective diameters range between 92 and 132 nm, while direct dissolution in distilled water is suitable for the deprotected copolymers, yielding effective diameters between 52 and 173 nm. Critical micelle concentration (CMC) analyses corroborate particle size analyses and show a distinct impact of the molecular architecture; the lowest CMC (8 µg mL−1) is observed when the poly(l ‐leucine) segment forms the C‐block and the hydrophilic, disassembly driving poly(l ‐lysine) segment is short. DNA complexation, evaluated by gel motility and RiboGreen analyses, depends strongly on the molecular architecture. A more efficient DNA complexation is observed when poly(l ‐lysine) and poly(l ‐leucine) form individual blocks as opposed to them forming a copolymer.  相似文献   

14.
The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu2+(l ‐phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu2+(l ‐phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed‐phase column with an optimized mobile phase composed of 6 mmol/L of l ‐phenylalanine or N,N‐dimethyl‐l ‐phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.  相似文献   

15.
In this study, poly(styrene‐co‐N‐methacryloyl‐l ‐phenylalanine methyl ester)‐functionalized magnetic nanoparticles were constructed and used as magnetic solid‐phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)‐based sorbents, N‐methacryloyl‐l ‐phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)‐based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)‐based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid‐phase extraction sorbents have a great potential for the analysis of preservatives in food samples.  相似文献   

16.
The synthesis in one‐pot reactions and structural characterization of six new tri‐n‐butyltin(IV) derivatives of Schiff bases are reported. The compounds are derived from a condensation reaction between l ‐alanine, l ‐valine, l ‐isoleucine, l ‐methionine, l ‐phenylalanine or l ‐tryptophan and 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde. Characterization was completed using elemental analysis, infrared spectroscopy, mass spectrometry, one‐ and two‐dimensional solution NMR (1H, 13C and 119Sn) as well as solid‐state 119Sn NMR. In addition, the crystal structures of three of the compounds were confirmed using single‐crystal X‐ray diffraction. Although five‐coordinated and polymeric in the solid state, the tin compounds are four‐coordinated and monomeric in solution. The coordination environment around the triorganotin units comprises three carbon atoms and two oxygen atoms from two ligands in a trigonal bipyramidal geometry. The anti‐proliferative effect of these compounds on the cervical carcinoma cell lines HeLa, CaSki and ViBo was screened in vitro, the compounds showing cytotoxic activity against all three strains and null or low cytotoxic activity (necrotic) as well. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
We report a series of short peptides possessing the sequence (FE)n or (EF)n and bearing l ‐proline at their N‐terminus that self‐assemble into high aspect ratio aggregates and hydrogels. We show that these aggregates are able to catalyze the aldol reaction, whereas non‐aggregated analogues are catalytically inactive. We have undertaken an analysis of the results, considering the accessibility of catalytic sites, pKa value shifts, and the presence of hydrophobic pockets. We conclude that the presence of hydrophobic regions is indeed relevant for substrate solubilization, but that the active site accessibility is the key factor for the observed differences in reaction rates. The results presented here provide an example of the emergence of a new chemical property caused by self‐assembly, and support the relevant role played by self‐assembled peptides in prebiotic scenarios. In this sense, the reported systems can be seen as primitive aldolase I mimics, and have been successfully tested for the synthesis of simple carbohydrate precursors.  相似文献   

18.
A new hydrogelator based on L ‐phenylalanine with a long hydrophobic chain and positively charged terminus was synthesized, and its gelation behavior in H2O was investigated. Polarized optical microscopy (POM), field emission scanning electron microscopy (FE‐SEM), and X‐ray diffraction (XRD) results indicate that the hydrogelator self‐assembles into fibres‐like aggregates which then lead to the formation of a hydrogel. 1H‐NMR and CD spectra of hydrogels and aqueous solution revealed that intermolecular H‐bonding between the amide groups was the driving force for gelation. A luminescence study, in which ANS (8‐anilinonaphthalene‐1‐sulfonic acid) was used as a probe, indicated that the hydrophobic interactions between long chains were the driving force for gelation. Consequently, it was proved that the hydrogelator self‐assembles into fibre‐like aggregates and then forms supramolecular hydrogels through the H‐bonding and hydrophobic interactions.  相似文献   

19.
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but this is difficult to realize. Now a self‐reporting strategy is presented for visualizing the crystallization process by a dyed self‐assembled inhibitor made from the copolymers with tri(ethylene glycol)‐grafting polymethylsiloxane as the main chain and poly(N6‐methacryloyl‐l ‐lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide the complete separation process of two enantiomers with colorless crystals as the first product and red crystals as the second. This method leads to high optical purity of d /l ‐Asn?H2O (99.9 % ee for d ‐crystals and 99.5 % for l ‐crystals) in a single crystallization process. It requires a small amount of additives and shows excellent recyclability.  相似文献   

20.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号