首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis  相似文献   

2.
3.
得到了Helbing交通流流体力学模型的标准守恒形式,并证明了模型的双曲性,这对研究模型的解析性质和数值格式至关重要.基于给出的守恒形式,设计了高效求解模型方程的LDG(lo-cal discontinuous Galerkin)格式,并模拟了由不稳定平衡态到稳定的时停时走波的演化.数值模拟也表明,通过扩散系数校正确实使模型得到改进,避免了车辆碰撞和出现极端高密度.  相似文献   

4.
为了研究反应堆结构中的诸如燃料棒、蒸汽发生器和其它换热器传热管束等的流体-结构交互作用问题,利用有限体积法离散大涡模拟(large eddy simulation, LES)的流体控制方程,用有限元方法求解结构动力学方程,并结合动网格技术,建立三维流体诱发振动的数值模型,模拟直管束中流体的流动及结构振动,实现计算结构动力学(computational structure dynamics, CSD)与计算流体力学(computational fluid dynamics, CFD)之间的联合仿真.首先,基于流固耦合方法对单管的流致振动特性进行了详细分析,得到了其动力学响应与流场特性;其次基于建立的传热管束流致振动计算模型,研究了两并列管、两串列管以及3×3正方形排列管束的流致振动行为.  相似文献   

5.
In this paper simulation of cavitating flow over the Clark-Y hydrofoil is reported using the large eddy simulation (LES) turbulence model and volume of fluid (VOF) technique. We applied an incompressible LES modelling approach based on an implicit method for the subgrid terms. To apply the cavitation model, the flow has been considered as a single fluid, two-phase mixture. A transport equation model for the local volume fraction of vapour is solved and a finite rate mass transfer model is used for the vapourization and condensation processes. A compressive volume of fluid (VOF) method is applied to track the interface of liquid and vapour phases. This simulation is performed using a finite volume, two phase solver available in the framework of the OpenFOAM (Open Field Operation and Manipulation) software package. Simulation is performed for the cloud and super-cavitation regimes, i.e., σ = 0.8, 0.4, 0.28. We compared the results of two different mass transfer models, namely Kunz and Sauer models. The results of our simulation are compared for cavitation dynamics, starting point of cavitation, cavity’s diameter and force coefficients with the experimental data, where available. For both of steady state and transient conditions, suitable accuracy has been observed for cavitation dynamics and force coefficients.  相似文献   

6.
二阶动态亚格子尺度应力模型   总被引:1,自引:0,他引:1  
提出了一个基于亚格子尺度应力与速度梯度张量之间关系的二阶动态模型.然后利用在高雷诺数的流场直接数值解的结果对此二阶模型进行检验.直接数值解的流场包括均匀各向同性强迫湍流,衰减湍流以及均匀旋转湍流.数值检验结果发现与一阶动态模型相比,二阶模型的相关系数提高.  相似文献   

7.
A graph-theoretic framework for the dynamic simulation of hydrodynamic (both axial and radial flow) machines is presented in this article. The physics based analytical models are developed by considering the dynamics of the hydraulic fluid flow and its interaction with the mechanical components. A linear graph is used to capture the topology of the system and the interconnection of the constituent components. Using the graph-theoretic framework, a dynamic model of an automotive hydrodynamic torque converter is developed to simulate its behaviour under different flow conditions. The ability of the model to capture different features of the torque converter will also be demonstrated by simulation. The simulation results are compared with and validated by experimental results in the literature.  相似文献   

8.
A computationally efficient design methodology for transonic airfoil optimization has been developed. In the optimization process, a numerically cheap physics-based low-fidelity surrogate (the transonic small-disturbance equation) is used in lieu of an accurate, but computationally expensive, high-fidelity (the compressible Euler equations) simulation model. Correction of the low-fidelity model is achieved by aligning its corresponding airfoil surface pressure distribution with that of the high-fidelity model using a shape-preserving response prediction technique. The resulting method requires only a single high-fidelity simulation per iteration of the design process. The method is applied to airfoil lift maximization in two-dimensional inviscid transonic flow, subject to constraints on shock-induced pressure drag and airfoil cross-sectional area. The results showed that more than a 90% reduction in high-fidelity function calls was achieved when compared to direct high-fidelity model optimization using a pattern-search algorithm.  相似文献   

9.
Large eddy simulations of the flow between a rotating and a stationary disk have been performed using a dynamic and a mixed dynamic subgrid-scale model. The simulations were compared to direct numerical simulation results. The mixed dynamic model gave better overall predictions than the dynamic model. Modifications of the near-wall structures caused by the mean flow three-dimensionality were also investigated. Conditional averages near strong stress-producing events led to the same conclusions regarding these modifications as studies of the flow generated by direct numerical simulation, namely a distinct asymmetry of the vortices producing sweeps and ejections.  相似文献   

10.
Large eddy simulations of the flow between a rotating and a stationary disk have been performed using a dynamic and a mixed dynamic subgrid-scale model. The simulations were compared to direct numerical simulation results. The mixed dynamic model gave better overall predictions than the dynamic model. Modifications of the near-wall structures caused by the mean flow three-dimensionality were also investigated. Conditional averages near strong stress-producing events led to the same conclusions regarding these modifications as studies of the flow generated by direct numerical simulation, namely a distinct asymmetry of the vortices producing sweeps and ejections.  相似文献   

11.
The aim of this work is to simulate rarefied gas flow in complex geometries, under flow conditions that range from the hydrodynamic, through the transitional, to the molecular regimes. Existing computational models apply to molecular or viscous flow, but the treatment of the transitional flow is still underdeveloped.To deal with the difficult transitional flow, two models with overlapping ranges of applicability are introduced. A direct simulation Monte Carlo (DSMC) type model, which can be used in the molecular and up to the lower transitional flow, has been designed. For the viscous to the upper transitional flow, a numerical model using a particle method is proposed. The objective is to obtain a smooth transition between the probabilistic simulation of particle histories and the deterministic approach of the solution of partial differential equations.The DSMC model has been successfully applied to molecular and lower transitional flow in a complex geometry with stationary and moving boundaries. The test results agree well with published data. The particle method was tested using simplified Navier-Stokes equations in a channel. Preliminary results in the low viscous range seem to indicate that the approach is viable.  相似文献   

12.
A two-dimensional numerical model for the evolution of a bottom due to particle deposition and resuspension by a fluid flow is here presented. A computational fluid dynamic approach is used to calculate the flow field and a Lagrangian particle tracking technique is applied to solve the dispersed phase. The evolution of the lower boundary is simulated taking into account the mass conservation of the solid phase and the geotechnical properties of the granular material. The model is characterized by two important features. First, fluid dynamics are coupled with the bottom evolution due to particle deposition and resuspension. This permits to use the model to simulate complex flow fields as well as complex time-evolving geometries. Second, the dispersed phase is calculated by a Lagrangian approach, which retains the discrete information of the individual particles of the granular bottom which may be of interest for some industrial processes (coating) and environmental flows (sediment stratification). First consistency checks have been performed for some deposition and resuspension test cases with fluid at rest. The model has also been tested by comparison with a physical experiment of deposition inside a cavity. Finally, as an example of possible applications of industrial and environmental interest, the model has been applied to investigate particle deposition in rectangular cavities and the evolution of a sand heap by a fluid flow.  相似文献   

13.
This paper investigates the fuel spray behavior and variation of the spray characteristics under different injection pressures in internal combustion engines. In diesel engines the fuel spray is affected by the cavitation phenomenon which occurs in the injector orifice. The cavitation is one of the important phenomena which has a significant effect on the fuel spray characteristics. In this paper, for a specified geometry of the nozzle and the combustion chamber, the effect of the cavitation phenomenon on the spray characteristics, i.e. spray penetration length, the Sauter main diameter and evaporation are studied numerically for different values of the injection pressures. High injection pressure causes high velocity of the fuel in the injector orifice which leads to an effective atomization process with small and dispersed fuel droplets. The fluid flow equations are calculated in the combustion chamber to obtain the spray model. Since it is known that, high injection pressure together with low discharge pressure leads to creation of cavitation phenomenon inside the injector orifice, then for having cavitation phenomenon inside the injector orifice and consequently for investigating the cavitation phenomenon effects on the spray characteristics, the injection pressure values of 10–150 MPa are considered while the discharge pressure remains constant. The injector and combustion chamber are simulated in separated regions and the results of the outlet of the nozzle are used as the boundary conditions for solving the fuel flow inside the combustion chamber to achieve the spray simulation. The results of this study show that by increasing the injection pressure, the value of the spray penetration length increases and the Sauter main diameter decreases for constant discharge pressure. The Hydraulic Flip phenomenon occurs after the injection pressure of 120 MPa on the base of the results of this work.  相似文献   

14.
液滴的动态湿润现象广泛存在于自然界和工业生产中,该现象数值研究的建模需要解决接触线附近的奇异性并引入合理的接触角描述.基于相场方法,结合Yokoi动态接触角模型,建立了考虑动态润湿效应的两相流数值模型,并在OpenFOAM开源平台上实现相应程序.针对液滴撞击壁面的动态湿润过程,数值模拟和对比研究了不同的接触角模型.结果表明:接触角模型的选择对液滴动态润湿过程的模拟结果具有较大的影响,其中基于改进动态接触角模型的结果与文献中的实验结果具有很好的吻合度,反映了提出的数值模型在液滴的动态润湿行为模拟的有效性.  相似文献   

15.
This paper presents a numerical solution to the equations describing Darcian flow in a variably saturated porous medium—a classical Richards’ equation model Richards (1931) [1] and an extension of it that approximates the flow in media with preferential paths—a dual porosity model Gerke and van Genuchten (1993) [8]. A numerical solver to this problem, the DRUtES computer program, was developed and released during our investigation. A new technique which maintains an adaptive time step, defined here as the Retention Curve Zone Approach, was constructed and tested. The aim was to limit the error of a linear approximation to the time derivative part. Finally, parameter identification was performed in order to compare the behavior of the dual porosity model with data obtained from a non-homogenized fracture and matrix flow simulation experiment.  相似文献   

16.
Whenever simulation requires much computer time, interpolation is needed. Simulationists use different interpolation techniques (eg linear regression), but this paper focuses on Kriging. This technique was originally developed in geostatistics by DG Krige, and has recently been widely applied in deterministic simulation. This paper, however, focuses on random or stochastic simulation. Essentially, Kriging gives more weight to ‘neighbouring’ observations. There are several types of Kriging; this paper discusses—besides Ordinary Kriging—a novel type, which ‘detrends’ data through the use of linear regression. Results are presented for two examples of input/output behaviour of the underlying random simulation model: Ordinary and Detrended Kriging give quite acceptable predictions; traditional linear regression gives the worst results.  相似文献   

17.
A two-dimensional model for the simulation of a binary dendritic growth with convection has been developed in order to investigate the effects of convection on dendritic morphologies. The model is based on a cellular automaton (CA) technique for the calculation of the evolution of solid/liquid (s/l) interface. The dynamics of the interface controlled by temperature, solute diffusion and Gibbs–Thomson effects, is coupled with the continuum model for energy, solute and momentum transfer with liquid convection. The solid fraction is calculated by a governing equation, instead of some approximate methods such as lever rule method [A. Jacot, M. Rappaz, Acta Mater. 50 (2002) 1909–1926.] or interface velocity method [L. Nastac, Acta Mater. 47 (1999) 4253; L. Beltran-Sanchez, D.M. Stefanescu, Mat. and Mat. Trans. A 26 (2003) 367.]. For the dendritic growth without convection, mesh independency of simulation results is achieved. The simulated steady-state tip velocity are compared with the predicted values of LGK theory [Lipton, M.E. Glicksmanm, W. Kurz, Metall. Trans. 18(A) (1987) 341.] as a function of melt undercooling, which shows good agreement. The growth of dendrite arms in a forced convection has been investigated. It was found that the dendritic growth in the upstream direction was amplified, due to larger solute gradient in the liquid ahead of the s/l interface caused by melt convection. In the isothermal environment, the calculated results under very fine mesh are in good agreement with the Oseen–Ivanstov solution for the concentration-driven growth in a forced flow.  相似文献   

18.
The paper studies the geometrical aspects of steady, two-dimensional potential flows and their relation to the physics that governs them. To achieve this, the streamline curvature of a flow is determined when the vector velocity field describing it, is known. Two methods, which allow the calculation of streamline curvature at every point of a flow field, are developed: the ‘Method of Rotation’ and the ‘Method of Directional Derivative’. Especially the first method reveals an interesting feature of curvature, allowing it to be interpreted kinematically. Furthermore, an attempt has been made towards the formulation of a potential theory from a geometrical perspective. For this reason the concept of ‘Global Curvature’ is introduced, being a measure of both stream and potential line curvature. It has been proven that it contains all the information needed to determine the physical quantities of velocity and static pressure throughout a potential flow, thus depicting the strong link between geometry and physics.  相似文献   

19.
A numerical algorithm for the biharmonic equation in domainswith piecewise smooth boundaries is presented. It is intendedfor problems describing the Stokes flow in the situations whereone has corners or cusps formed by parts of the domain boundaryand, due to the nature of the boundary conditions on these partsof the boundary, these regions have a global effect on the shapeof the whole domain and hence have to be resolved with sufficientaccuracy. The algorithm combines the boundary integral equationmethod for the main part of the flow domain and the finite-elementmethod which is used to resolve the corner/cusp regions. Twoparts of the solution are matched along a numerical ‘internalinterface’ or, as a variant, two interfaces, and theyare determined simultaneously by inverting a combined matrixin the course of iterations. The algorithm is illustrated byconsidering the flow configuration of ‘curtain coating’,a flow where a sheet of liquid impinges onto a moving solidsubstrate, which is particularly sensitive to what happens inthe corner region formed, physically, by the free surface andthe solid boundary. The ‘moving contact line problem’is addressed in the framework of an earlier developed interfaceformation model which treats the dynamic contact angle as partof the solution, as opposed to it being a prescribed functionof the contact line speed, as in the so-called ‘slip models’.  相似文献   

20.
The despatch bay is a critical interface within an organisation, linking the warehousing and transport operations. However, delays here have wider supply chain implications given that the flow of materials through the supply chain is disrupted. Despite this, there has been little research on improvement activities to this process. This paper uses a case study of a steel processor to develop a simulation model to test strategies for increasing despatch bay productivity. From the simulation results, it was found that a combination of improvements were needed, to both reduce process times and ensure the earlier receipt of orders. The research approach presented in this paper can be used in other business environments having similar operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号