首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In the present paper we give a fully quantummechanical treatment of the self-sustained oscillation of one mode in solid-state lasers. The total laser system consists of various subsystems: The lasing mode is coupled to the atoms of the active material and to a loss mechanism. It is assumed to be in complete resonance with the homogeneously broadened atomic transition. The pump of the active atoms, which are assumed to have only two levels, is brought about by their interaction with a large system of negative temperature. The active atoms decay not only by induced and spontaneous emission into the lasing mode, but also by spontaneous emission into the continuum of nonlasing modes (and possibly by nonradiative transitions). This process is fully taken into account. The pumping process and the spontaneous emission into the continuum of nonlasing modes are treated as in a preceding paper. There we have shown that the coordinates of these fields can be eliminated in some sense and give rise to a mean dissipative motion of the atoms and to fluctuations. Using the Heisenberg picture we obtain a system of coupled nonlinear equations of motion for the atomic operators and for the creation operator of the oscillating mode. We then eliminate the atomic operators by the iteration procedure of the semiclassical laser theory. This leaves us with a nonlinear differential equation of the van-der-Pol type for the creation operator of the laser mode, which contains the fluctuations of the pumping process, the spontaneous emission into the continuum and the loss mechanism as inhomogeneities of operator character. Such an operator equation has previously been obtained byHaken, who has shown, that in the neighbourhood of the stationary saturated level of oscillation the amplitude is highly stabilized, whereas the phase undergoes an undamped diffusion process. This process takes the phase in the course of time arbitrarily far from any given initial value. We useHaken's method of solution and demonstrate that the correct commutation rules for the oscillating mode [b(t),b +(t)]=1 are preserved for all times. Besides these quantum mechanical properties our solution contains all the well known results of the semiclassical theory. Our main result is the expression for the linewidth, which is caused by phase diffusion. The half width at half maximum power is in circular frequencies given by
$$\Delta \omega = \frac{{\hbar \omega }}{P}\kappa ^2 \left( {n_{TH} + \frac{1}{2} + \frac{1}{{2\sigma _k }}} \right) = \frac{{\hbar \omega }}{P}\kappa ^2 \left( {n_{TH} + \frac{1}{2} + n_{SP} } \right).$$  相似文献   

2.
We present a quantum mechanical nonlinear treatment of the phase and amplitude flucutations of gas lasers, i.e. lasers with moving atoms, and of solid state lasers with an inhomogeneously broadened line. The atoms may possess an arbitrary number of levels. As in our preceding papers the noise due to the pump, incoherent decay, lattice vibrations or atomic collisions, as well as due to the thermal and zero point fluctuations of the cavity is completely taken into account. The linewidth (due to phase diffusion), and the intensity fluctuations (due to amplitude noise) are essentially expressed by the threshold inversion, the unsaturated inversion and the saturated population numbers of the two atomic levels, which support the laser modes. Our results apply to the whole threshold region and above up to essentially the same photon number, to which the previous semiclassical theories of inhomogeneously broadened lasers were applicable. For the example of a two-level system we also demonstrate the application of a new technique which allows us to eliminate rigorously the atomic variables (operators), yielding a set of nonlinear coupled equations for the lightfield operators alone. If the elimination procedure is carried out only partially and additional approximations are made, we find essentially the rate equations ofMcCumber, in a form derived byLax. When we neglect noise, the nonlinear equation may be solved exactly in the case of single mode operation. By a suitable expansion of the exact multimode equations we find a convenient set of equations, which reduce in the noiseless case to those derived and used previously byHaken andSauermann as well asLamb.  相似文献   

3.
We report on the measurement of the frequency noise properties of a 4.6-??m distributed-feedback quantum-cascade laser (QCL) operating in continuous wave near room temperature using a spectroscopic set-up. The flank of the R(14) ro-vibrational absorption line of carbon monoxide at 2196.6?cm?1 is used to convert the frequency fluctuations of the laser into intensity fluctuations that are spectrally analyzed. We evaluate the influence of the laser driver on the observed QCL frequency noise and show how only a low-noise driver with a current noise density below ${\approx} 1~\mbox{nA/}\sqrt{}\mbox{Hz}$ allows observing the frequency noise of the laser itself, without any degradation induced by the current source. We also show how the laser FWHM linewidth, extracted from the frequency noise spectrum using a simple formula, can be drastically broadened at a rate of ${\approx} 1.6~\mbox{MHz/}(\mbox{nA/}\sqrt{}\mbox{Hz})$ for higher current noise densities of the driver. The current noise of commercial QCL drivers can reach several $\mbox{nA/}\sqrt{}\mbox{Hz}$ , leading to a broadening of the linewidth of our QCL of up to several megahertz. To remedy this limitation, we present a low-noise QCL driver with only $350~\mbox{pA/}\sqrt{}\mbox{Hz}$ current noise, which is suitable to observe the ??550?kHz linewidth of our QCL.  相似文献   

4.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

5.
A rigorous thermodynamic analysis has been done as regards the apparent horizon of a spatially flat Friedmann–Lemaitre–Robertson–Walker universe for the gravitationally induced particle creation scenario with constant specific entropy and an arbitrary particle creation rate \(\Gamma \). Assuming a perfect fluid equation of state \(p=(\gamma -1)\rho \) with \(\frac{2}{3} \le \gamma \le 2\), the first law, the generalized second law (GSL), and thermodynamic equilibrium have been studied, and an expression for the total entropy (i.e., horizon entropy plus fluid entropy) has been obtained which does not contain \(\Gamma \) explicitly. Moreover, a lower bound for the fluid temperature \(T_f\) has also been found which is given by \(T_f \ge 8\left( \frac{\frac{3\gamma }{2}-1}{\frac{2}{\gamma }-1}\right) H^2\). It has been shown that the GSL is satisfied for \(\frac{\Gamma }{3H} \le 1\). Further, when \(\Gamma \) is constant, thermodynamic equilibrium is always possible for \(\frac{1}{2}<\frac{\Gamma }{3H} < 1\), while for \(\frac{\Gamma }{3H} \le \text {min}\left\{ \frac{1}{2},\frac{2\gamma -2}{3\gamma -2} \right\} \) and \(\frac{\Gamma }{3H} \ge 1\), equilibrium can never be attained. Thermodynamic arguments also lead us to believe that during the radiation phase, \(\Gamma \le H\). When \(\Gamma \) is not a constant, thermodynamic equilibrium holds if \(\ddot{H} \ge \frac{27}{4}\gamma ^2 H^3 \left( 1-\frac{\Gamma }{3H}\right) ^2\), however, such a condition is by no means necessary for the attainment of equilibrium.  相似文献   

6.
In 2002, two neutrino mixing ansatze having trimaximally mixed middle (\(\nu _2\)) columns, namely tri-chi-maximal mixing (\(\text {T}\chi \text {M}\)) and tri-phi-maximal mixing (\(\text {T}\phi \text {M}\)), were proposed. In 2012, it was shown that \(\text {T}\chi \text {M}\) with \(\chi =\pm \,\frac{\pi }{16}\) as well as \(\text {T}\phi \text {M}\) with \(\phi = \pm \,\frac{\pi }{16}\) leads to the solution, \(\sin ^2 \theta _{13} = \frac{2}{3} \sin ^2 \frac{\pi }{16}\), consistent with the latest measurements of the reactor mixing angle, \(\theta _{13}\). To obtain \(\text {T}\chi \text {M}_{(\chi =\pm \,\frac{\pi }{16})}\) and \(\text {T}\phi \text {M}_{(\phi =\pm \,\frac{\pi }{16})}\), the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, \(m_1:m_2:m_3=\frac{\left( 2+\sqrt{2}\right) }{1+\sqrt{2(2+\sqrt{2})}}:1:\frac{\left( 2+\sqrt{2}\right) }{-1+\sqrt{2(2+\sqrt{2})}}\). In this paper we construct a flavour model based on the discrete group \(\varSigma (72\times 3)\) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric \(3\times 3\) matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of \(\varSigma (72\times 3)\). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.  相似文献   

7.
This paper discusses the thermal conductivityK of a dirty type II superconductor in the mixed state, for fields close to the upper critical field (H e2 orH e3) where the electronic component is dominant and easily separated. To order |Δ|2, the conductivity depends only on the space average 〈|Δ|2〉. Our formula is a generalisation of earlier results byMaki andAmbegaokar andGriffin for gapless superconductors. The slope\(\left( {\frac{{\partial K}}{{\partial H}}} \right)_{Hc2} \) is proportional to the slope of the magnetization curve\(\left( {\frac{{\partial K}}{{\partial H}}} \right)_{Hc2} \), the ratio of these two slopes being a universal function of temperature. These results are very different from the predictions of the “effective gap” model.  相似文献   

8.
We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.  相似文献   

9.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

10.
The shallow water equations have wide applications in ocean, atmospheric modeling and hydraulic engineering, also they can be used to model flows in rivers and coastal areas. In this article we obtained exact solutions of three equations of shallow water by using $\frac{{G'}} {G} $ -expansion method. Hyperbolic and triangular periodic solutions can be obtained from the $\frac{{G'}} {G} $ -expansion method.  相似文献   

11.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

12.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

13.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

14.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

15.
The average gyromagnetic ratio of the first excited 2+ states of the Tungsten isotopes was measured using a target of natural Tungsten. An external magnetic field of 40950±200 Gauss was employed for observing the precession of the angular distribution of the 115 keV deexcitationγ-rays following Coulomb-excitation with an atomic hydrogen beam of 2·18 MeV. The measurement of the angular distribution was carried out with a proton beam at 6 different energies between 1·5 and 3·7 MeV, and was found to be slightly perturbed by internal fields. The measured attenuation coefficients areG 2=0·966±0·049,G 4=1·07±0·15. The gyromagnetic ratio was found be\(\bar g = 0 \cdot 264_{ - 0 \cdot 019}^{ + 0 \cdot 023}\), in agreement with the average value of the measurements ofGoldring andVager and the average theoretical value ofNilsson andPrior, but lower than the measurements ofBodenstedt et al.  相似文献   

16.
We treat a laser consisting of one mode described by a running wave and a set of atoms with two optically active levels which are homogeneously broadened. We start from the laser density matrix equations ofWeidlich andHaake and define a distribution functionf for lightfield and atomic variables, where we use for the lightfield the coherent state representation and for the atomic system a modified version of the distribution function used bySchmid andRisken in a previous paper. We derive a partial differential equation forf which is completely exact and is of the type of a generalized Fokker-Planck equation, i.e. it contains higher derivatives. Using a recently stated theorem ofHaken andWeidlich we show that this distribution function allows to calculate single-time as well as multitime quantum mechanical correlation functions. If the leading terms of the generalized Fokker-Planck equation are retained we find the semiclassical Fokker-Planck equation ofRisken,Schmid andWeidlich. Our treatment can be extended to several modes connected with standing waves and multilevel atoms.  相似文献   

17.
We find Bose operator realization of radial- and azimuthal-differential operations in polar coordinate system by virtue of the entangled state |η〉 representation, which indicates that |η〉 representation just fits to describe the polar coordinate operators in quantum mechanics. The Bose operator corresponding to the Laplacian operation $\frac{\partial^{2}}{\partial r^{2} }+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2} }{\partial\varphi^{2}}$ for 2-dimensional system and its eigenvector are also obtained. Their new applications are partly presented.  相似文献   

18.
In this paper, we study the global regularity for the Navier-Stokes-Maxwell system with fractional diffusion. Existence and uniqueness of global strong solution are proved for \(\alpha \geqslant \frac {3}{2}\). When 0 < α < 1, global existence is obtained provided that the initial data \(\|u_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|E_{0}\|_{H^{\frac {5}{2}-2\alpha }}+\|B_{0}\|_{H^{\frac {5}{2}-2\alpha }}\) is sufficiently small. Moreover, when \(1<\alpha <\frac {3}{2}\), global existence is obtained if for any ε >?0, the initial data \(\|u_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|E_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}+\|B_{0}\|_{H^{\frac {3}{2}-\alpha +\varepsilon }}\) is small enough.  相似文献   

19.
Terahertz radiation generation by second-order nonlinear mixing of laser $ (\omega_{1} ,\,\vec{k}_{1} ) $ and its frequency shifted second harmonic $ \omega_{2} = 2\omega_{1} - \omega ,\,\,\vec{k}_{2} \, $ $ (\omega \ll \omega_{1} ) $ in a plasma, in the presence of an obliquely inclined density ripple of wave number $ \vec{q} $ , are investigated. The lasers exert ponderomotive force on electrons and drive density perturbations at $ (2\omega_{1} ,\,2\vec{k}_{1} - \vec{q}) $ and $ (\omega_{1} - \omega_{2} ,\,\vec{k}_{1} - \vec{k}_{2} - \vec{q}) $ . These perturbations beat with the electron oscillatory velocities due to the lasers to produce a nonlinear current at $ \omega ,\,\vec{k} = 2\vec{k}_{1} - \vec{k}_{2} - \vec{q} $ , resonantly driving the terahertz radiation when $ \vec{q} $ satisfies the phase matching condition. The radiated THz intensity depends on the relative polarization of the lasers and scales as the square of intensity of the fundamental laser and linearly with the square root of the intensity of the second harmonic. The THz emission is maximized when the polarization of the lasers is aligned. These results are consistent with the recent experimental results.  相似文献   

20.
We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations \({\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar }{2}, {\Delta } x_{1} {\Delta } p_{2} \ge \frac {\eta }{2}\). We show that the model has two essentially different phases which is determined by \(\kappa = 1 + \frac {1}{\hbar ^{2} } (\eta ^{2} - \theta \bar {\theta })\). We construct a operator \(\hat {\pi }_{i}\) commuting with \(\hat {x}_{j} \) and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号