首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
Mostly, fractionation in laboratory experiments have been carried out with single or binary model protein solutions. The question has arisen whether these experiments can be representative for industrial and natural biological solution fractionations. In this study, a comparison of single, ternary, and natural egg-white solutions is made. Thus, fractionation of ternary mixtures of ovalbumin, conalbumin, and lysozyme and natural egg-white protein solutions at different pH and two ionic strengths was studied with unmodified and UV modified polysulfone ultrafiltration membranes. The modified membranes had an increased initial water flux and their zeta potentials were more negative than those of the unmodified membranes. The UV modified membranes became more hydrophilic due to the formation of carboxylate and sulphonate groups. In ultrafiltration of single protein solutions the highest flux reduction and the lowest protein retention were obtained with ovalbumin at its isoelectric point (pH 4.8). At this pH lysozyme and conalbumin were positively charged and highly retained because of effective size exclusion due to charge repulsion. Also, in fractionation of ternary mixtures and natural egg-white solutions, ovalbumin was the major protein that could permeate the membranes at pH 4.8. Ovalbumin was highly retained due to charge repulsion at all other tested pH values. Retention of ovalbumin and transmission of lysozyme increased in ultrafiltration of egg-white solutions in the presence of salt at pH 4.8. It could be seen clearly that the behaviour of ovalbumin being the most abundant protein, mainly determined the fractionation properties of the mixtures. Comparison of the results from fractionation of solutions of ternary model proteins and natural egg-whites showed that retention was lower and flux reduction smaller in UF of the natural egg-white solutions. This was probably due to interaction of proteins or/and salts presents in the natural egg-white solutions, which could not be modelled by the main protein components. On the whole it seemed as the proteins studied behaved much in the same way in mixtures as separately.  相似文献   

2.
The influence of ionic strength and protein concentration on the transport of bovine serum albumin (BSA), ovalbumin and lysozyme through chitosan (CHI)/polystyrenesulfonate (PSS) multilayers on polyether sulfone supports are investigated under ultrafiltration conditions. The percentage transmission and flux of BSA, ovalbumin and lysozyme were found to increase with increase in salt concentration in the protein. The percentage transmission of BSA through 9 bilayer membrane was found to increase from 5.3 to 115.6 when the salt concentration was varied from 0 to 1 M. It was observed that 0.1 M NaCl in BSA solution is capable of permeating all the BSA. When the salt concentration in BSA was further increased, a negative solute rejection (solute enrichment in permeate) was found to take place. With 9 bilayer membrane, the percentage transmission of ovalbumin was found to increase from 23.3 to 125.8 when the salt concentration in protein was increased from 0 to 0.05 M. The effect of protein concentration on protein transport is studied taking BSA as a model protein. BSA was rejected by the multilayer membrane at all the studied concentrations (0.25, 0.5, 1 and 2 mg/ml). With increase in feed concentration, maximum rejection of protein occurred at higher number of CHI/PSS bilayers. BSA solution flux was found to decrease with an increase in BSA concentration. This study indicates that it is possible to fine tune the transport properties of proteins through multilayer membranes by varying the concentration and ionic strength of protein solutions.  相似文献   

3.
Selective transmission of a solute through membranes proves to be a challenge in ultrafiltration processes. This is because the transport of a solute through an ultrafiltration membrane does not depend on size alone, but on several other factors such as solute-solute and solute-membrane interactions. By manipulating physicochemical parameters and process variables (eg. pH, ionic strength, concentration of solute, etc.) and by membrane modification, it is possible to enhance the transmission of a particular solute and thus enhance fractionation of solutes. In this paper, the effect of pH on fractionation of BSA and lysozyme by ultrafiltration through 50 kDa MWCO (molecular weight cut off) polysulfone membrane has been examined. It was found that the selectivity of solute separation for dilute mixtures of BSA and lysozyme was very much pH dependent and varied from 3.3 at pH 5.2 to 220.0 at pH 8.8. However, at a higher feed concentration, the transmission of lysozyme through polysulfone membrane decreases quite dramatically resulting in lower throughput of product. An attempt has been made to enhance the transmission of lysozyme through the polysulfone ultrafiltration membrane by pretreating the surface of the membrane by adsorption of another protein, myoglobin. An increase in lysozyme transmission of up to 63% with respect to native membrane was observed. The stability of this pretreatment and its effect on permeate flux have been examined. The pretreated membrane was used to fractionate BSA/lysozyme mixtures. Even at higher feed concentration, enhanced fractionation with respect to native membrane was observed due to highly enhanced transmission of lysozyme through the pretreated membrane.  相似文献   

4.
The adsorption of bovine serum albumin (BSA) and lysozyme (LYS) on siliceous SBA-15 with 24 nm pores was studied using flow microcalorimetry; this is the first attempt to understand the thermodynamics of protein adsorption on SBA-15 using flow microcalorimetry. The adsorption mechanism is a strong function of protein structure. Exothermic events were observed when protein–surface interactions were attractive. Entropy-driven endothermic events were also observed in some cases, resulting from lateral protein–protein interactions and conformational changes in the adsorbed protein. The magnitudes of the enthalpies of adsorption for primary protein–surface interactions decrease with increased surface coverage, indicating the possibility of increased repulsion between adsorbed protein molecules. Secondary exothermic events were observed for BSA adsorption, presumably due to secondary adsorption made possible by conformational changes in the soft BSA protein. These secondary adsorption events were not observed for lysozyme, which is structurally robust. The results of this study emphasize the influence of solution conditions and protein structure on conformational changes of the adsorbed protein and the value of calorimetry in understanding protein–surface interactions.  相似文献   

5.
In this work we have studied the derivatization of protein disulfide bonds with p-Hydroxymercurybenzoate (pHMB) in strong alkaline medium without any preliminary reduction. The reaction has been followed by the determination of the protein–pHMB complex using size exclusion chromatography coupled to a microwave/UV mercury oxidation system for the on-line oxidation of free and protein-complexed pHMB and atomic fluorescence spectrometry (SEC–CVG–AFS) detection. The reaction has been optimized by an experimental design using lysozyme as a model protein and applied to several thiolic proteins.  相似文献   

6.
A fundamental study about the selective foam separation of protein mixture was carried out. A solution containing two proteins, ovalbumin (OA) and lysozyme (LZ), and an anionic surfactant, sodium dodecyl sulfate (SDS), was adjusted to pH 6.0, which referred to an intermediate state between the isoelectric points of the proteins. The solution was processed by continuous foam separation. The results showed that a proper addition of SDS greatly improved the selective recovery of LZ to OA. The experimental data were well explained by a simple model that most of cationic protein molecules (LZ) are associated with SDS and the adsorption of all the species including LZ-SDS complexes are subjected to Langmuir adsorption isotherm. The results also showed that one of the Langmuir parameters, which means a kind of lyophillic property of adsorbed material, of LZ-SDS complexes was extremely large as compared with that of primary protein.  相似文献   

7.
A study of single proteins, β-lactoglobulin and lysozyme of different sizes and electrical characteristic as a function of pH, ionic strength and nature of salt (NaCl or CaCl2) allows to evaluate the filtration performances. Streaming potential measurements confirm that proteins contribute to the net charge of the system and that the protein tranfer through mineral membranes is governed by ionic and steric exclusion phenomena.This work shows the correlation between protein transmission and streaming potential values which takes into account steric and ionic exclusion. The ionic repulsion decreases the transmission. This one depends on membrane net charge characterised by streaming potential, which depends on the solution composition. This model, which does not take into account interactions between protein and membrane fouling leads to an overestimation of calculated transmission values when proteins are in a mixture. However, it allows a correct estimation of transmission variations versus the studied variables: pH and ionic strength.  相似文献   

8.
The effects of yeast cells on membrane fouling by a protein mixture were studied in dead-end filtration. A 0.2 μm cellulose acetate membrane was used with a 1 g/l protein mixture consisting of equal amounts of bovine serum albumin, lysozyme, and ovalbumin. Yeast cells were used either in suspension or as preformed yeast cakes on top of the membrane. A small concentration of 0.022 g/l yeast cells in suspension enhanced the permeate flux and maintained protein transmission at nearly 100%, compared with a 60% reduction in the protein concentration in the permeate obtained after 3 h for the protein mixture filtered alone. Higher suspended yeast concentrations of 0.043 and 0.18 g/l resulted in lower fluxes and intermediate values for the protein transmission. For the three different thicknesses of preformed yeast cakes studied (0.025, 0.05, and 0.10 cm), the cake with intermediate thickness resulted in protein transmission of nearly 100% and the highest permeate flux. The thinner yeast cake resulted in a lower permeate flux, but it maintained protein transmission at nearly 100%, whereas the thicker cake resulted in a reduction in both permeate flux and protein transmission. The mechanism proposed to explain the results is based on the formation of a secondary membrane by the yeast cells on top of the original membrane. This secondary membrane entraps protein aggregates, which would otherwise cause membrane fouling and reductions in permeate flux and protein transmission.  相似文献   

9.
A set of molecular models for 78 pure substances from prior work is taken as a basis for systematically studying vapor–liquid equilibria (VLE) of ternary systems. All 33 ternary mixtures of these 78 components for which experimental VLE data are available are studied by molecular simulation. The mixture models are based on the modified Lorentz–Berthelot combining rule that contains one binary interaction parameter which was adjusted to a single experimental binary vapor pressure of each binary subsystem in prior work. No adjustment to ternary data is carried out. The predictions from the molecular models of the 33 ternary mixtures are compared to the available experimental data. In almost all cases, the molecular models give excellent predictions of the ternary mixture properties.  相似文献   

10.
A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein–ion-exchanger system, the physical meaning of the parameters was retained.  相似文献   

11.
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by 1H nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.  相似文献   

12.
Novel cation-exchange adsorptive membranes were assessed according to their protein adsorption capacity and permeation flowrate. Maximum static adsorption capacities for the three main egg-white proteins, lysozyme, ovoalbumin and conalbumin, were 140, 88 and 66 mg/ml, respectively. However, membranes showed an inverse relationship between permeation flowrate and static protein adsorption capacity. Two size cartridges (membrane volume of 0.42 and 3.5 ml) were built using the selected membrane. An adsorptive cross-flow cartridge was tested to recover and purify lysozyme from an egg-white solution. Breakthrough curves developed using a pure lysozyme solution showed a dynamic-to-static capacity ratio of 0.6, which was reduced to 0.4 during lysozyme recovery from egg-white solution in cross-flow mode. Total process cycle for the enzyme recovery and purification was in the range of 10–15 min for both cartridges. In both cases high-purity lysozyme (95%) was recovered with a productivity of 150 g/(l h) and no size-exclusion effect was detected.  相似文献   

13.
Macroporous chitosan membranes with controlled pore sizes and good mechanical properties were prepared and cross-linked with ethylene glycol diglycidyl ether to increase their chemical stability. Because of their amine groups, they can serve as anion-exchangers (with an ion-exchange capacity as high as 0.83 meq/g dry cross-linked membrane) and can be employed for protein separations in the ion-exchange mode. At pH<7, their surface is positively charged, and they can adsorb proteins with a pI<6 at appropriate pHs. Five proteins, namely ovalbumin (pI=4.6), human serum albumin (pI=4.8), soybean trypsin inhibitor (pI=4.5), lysozyme (pI=11) and cytochrome C (pI=10.6) were selected as model proteins to investigate their adsorption on the chitosan membranes. Relatively high dynamic capacities were achieved at a flow rate of 2 ml/min, namely 11.6, 19 and 20.8 mg/ml membrane for human serum albumin, ovalbumin and soybean trypsin inhibitor, respectively. These proteins could be efficiently recovered (91–98%) from the membranes using a 1 N NaCl in 0.02 N sodium phosphate solution (pH 6) as eluant. Protein separations were performed from binary mixtures (ovalbumin–lysozyme, human serum albumin–cytochrome C, and soybean trypsin inhibitor–cytochrome C), and high purity products (∼99%) obtained in a single pass. These membranes showed high stability and reproducibility.  相似文献   

14.
Separation of bovine serum albumin (BSA) from poly(ethylene glycol) (PEG) through ultrafiltration membranes has been investigated. Concentration polarization by BSA represents a strong limitation to the transmission of PEG through a porous membrane. The application of an electric field normal to the membrane can help to reduce BSA concentration polarization and to enhance PEG transmission, both in ultrafiltration and in diafiltration mode. A range of solution compositions of BSA and PEG has been investigated. The contribution of electrokinetic phenomena is measured by specific experiments.  相似文献   

15.
Sericin protein, although a valuable resource for many industries including cosmetics, pharmaceutical and biomedical, has been discarded as a waste in silk industry, causing environmental pollution. This paper describes determination of a membrane-based process for sericin recovery from cocoon cooking wastewaters (CCW) that will enable value-added utilization of waste sericin. The iso-electric point (pI) of sericin was found as 5–6, whose MW was distributed as 180–200, 70–80, 30–40 and 10–25 kDa. Prior to membrane filtration, sericin was separated from other impurities via centrifugation (CFG) followed by microfiltration (MF) in the pre-treatment stage, which also helped minimize post membrane fouling. Ultrafiltration (UF) and nanofiltration (NF) were adopted at a pH equal to pI of sericin. UF achieved partial recovery of sericin polypeptides at 37–60%, which was attributed to increased transmission of uncharged sericin polypeptides at their pI. On the other hand, NF achieved sericin recovery as high as 94–95%, containing all MW fractions. Severe flux decline was the major problem due to protein–membrane interactions and high sericin concentrations, where concentration polarization mainly had a dominant effect. Although flux declines were as high as 58–88% in UF and 70–75% in NF, flux recovery by at least 83% was achieved by chemical cleaning using NaOH and free chlorine.  相似文献   

16.
This paper discusses a novel approach for predicting permeate flux decline in constant pressure ultrafiltration of protein solutions. A constant pressure process is assumed to be made up of a large number of small, sequential, constant flux ultrafiltration steps: the flux decreasing due to fouling and other related factors at the end of each step. The advantage of this approach is that constant flux ultrafiltration is easier to study, characterize, and model than constant pressure ultrafiltration. Consequently model parameters can be obtained in reliable and reproducible manner. Constant pressure ultrafiltration is dynamic in nature since both the magnitude of osmotic back-pressure and the extent of membrane fouling decrease as the permeate flux decreases with time. The proposed model takes into consideration the interplay between permeate flux, concentration polarization, and membrane fouling. The model demonstrates that the initial rapid flux decline is due to a combination of concentration polarization and membrane fouling while during the remaining part of the process, the effect of concentration polarization becomes negligible. The model also shows that concentration polarization affects the initial flux decline only at higher transmembrane pressures. This model which was validated using experimental data is conceptually simpler than other available models and easy to use. In addition to its value as a predictive tool it would particularly be useful for deciding appropriate start-up conditions in ultrafiltration processes.  相似文献   

17.
Concentration polarization affects almost all the membrane separation processes and can be the cause of a substantial reduction in the separation factor and flux. A generalized equation relating the modified Peclet number to the concentration polarization occurring in the boundary layer is proposed and shown applicable to the majority of membrane separation processes like gas separations, reverse osmosis, ultrafiltration, pervaporation, and dissolved gas permeation in liquid. The membrane permeability, separation factor (or solute rejection), membrane thickness, boundary layer mass transfer coefficient, and Henry's law coefficient are the factors that determine the extent of polarization. An analysis is presented to offer a clean division of the hydrodynamic effect from the pure membrane property for membrane separation processes of liquid phases. Also the effect of membrane thickness on polarization is discussed. An attempt has been made to reconcile the different approaches taken for different membrane processes in the literature. Experimental data from widely different sources illustrate and confirm the present theory for pervaporative separation of dilute solutions of volatile organic compounds, dissolved gas permeation, and ultrafiltration of proteins and carbowax. Specific suggestions are made to obtain independent experimental measurements of the Peclet number and polarization index in terms of measurable quantities like the actual and intrinsic separation factors.  相似文献   

18.
Molecular simulation calculations are presented for two types of complex fluid mixtures, namely elastomer polymer mixtures and water–1-octanol binary and ternary mixtures. Elastomer polymers are used widely as membrane materials for gas separation. In this respect, the solubility and diffusion coefficient of gases need to be known accurately. Predictions for both properties are presented here. Water–1-octanol mixture is a widely used prototype system used to assess the partitioning of various chemical compounds with applications to chemical industry, biotechnology, etc. The microscopic structure of the water–1-octanol mixture is examined and the Gibbs free energy of solvation of four organic solutes is calculated. In all cases, detailed atomistic force fields are used to account for inter- and intra-molecular interactions. Simulation results are shown to be in excellent agreement with literature experimental data.  相似文献   

19.
The aim of this study was to determine the capability and accuracy of Monte Carlo simulations to predict ternary vapor–liquid–liquid equilibrium (VLLE) for some industrial systems. Hence, Gibbs ensemble Monte Carlo simulations in the isobaric–isothermal (NpT) and isochoric–isothermal (NVT) ensembles were performed to determine vapor–liquid–liquid equilibrium state points for three ternary petrochemical mixtures: methane/n-heptane/water (1), n-butane/1-butene/water (2) and n-hexane/ethanol/water (3). Since mixture (1) exhibits a high degree of mutual insolubility amongst its components, and hence has a large three-phase composition region, simulations in the NpT ensemble were successful in yielding three distinct and stable phases at equilibrium. The results were in very good agreement with experimental data at 120 kPa, but minor deviations were observed at 2000 kPa. Obtaining three phases for mixture (2) with the NpT ensemble is very difficult since it has an extremely narrow three-phase region at equilibrium, and hence the NVT ensemble was used to simulate this mixture. The simulated results were, once again, in excellent agreement with experimental data. We succeeded in obtaining three-phase equilibrium in the NpT ensemble only after knowing, a priori, the correct three-phase pressure (corresponding to the force fields that were implemented) from NVT simulations. The success of the NVT simulation, compared to NpT, is due to the fact that the total volume can spontaneously partition itself favorably amongst the three boxes and only one intensive variable (T) is fixed, whereas the pressure and the temperature are fixed in an NpT simulation. NpT simulations yielded three distinct phases for mixture (3), but quantitative agreement with experimental data was obtained at very low ethanol concentrations only.  相似文献   

20.
A linearization method based on modified Gran functions, and a general nonlinear regression program were used to study potentiometric titration curves of denatured ovalbumin and lysozyme in 6 mol L–1 guanidine hydrochloride medium with the aim of determining the ionizable species. With both numerical techniques it was possible to determine the sum of the carboxylic groups, the imidazol, the α-amine, and the sum of ?-amine, phenolic and sulfhydryl groups, if the protein is completely denatured, and assumes a randomly coiled conformation. A total of 87.8 ± 2.5 and 20.7 ± 0.6 groups per mol were determined in the ovalbumin and lysozyme, respectively. These values are very close to the 88 and 21 groups expected by aminoacid composition of both proteins, indicating that all ionizable groups were exposed to the solvent. For ovalbumin the distribution of groups was very similar to that expected by the aminoacid composition, but for lysozyme some anomalies were observed, suggesting the existence of interactions between ionizable groups, altering the dissociation constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号