首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
4 and disilane Si2H6 induced by continuous wave CO2 laser irradiation has been investigated under the conditions of chemical vapor deposition (CVD) of amorphous hydrogenated silicon a-Si:H. At the very position of depositing the thin film the stationary chemical composition of the processing gas is probed in situ by an effusive molecular beam which passes through a differential pumping stage into a quadrupole mass spectrometer (QMS). With SiH4 as educt and SF6 as a sensitizer, SiH4 and Si2H6 are found in the processing gas while Si3H8 or higher silanes are lacking. Si2H6 and SF6 lead to SiH4, Si2H6, and Si3H8, but higher silanes are missing. The experimentally determined composition of the processing gas is semi-quantitatively reproduced by model calculations based on the assumption of stationary local equilibrium conditions and applying thermodynamic and spectroscopic data (molecular statistics). The mass balance of the processing gas entering and leaving the CVD chamber states an atomic ratio Si:H of 1:2 for the gas phase species forming the solid deposit on the reactor walls. This finding together with theoretical considerations indicates the intermediate Si2H4 to be the dominating gas phase species forming the a-Si:H thin films. Received: 17 July 1998/Accepted: 20 July 1998  相似文献   

2.
The adsorption process of silane (SiH4) on a SiGe(0 0 1) surface has been investigated by using infrared absorption spectroscopy in a multiple internal reflection geometry. We have observed that SiH4 dissociatively adsorbs on a SiGe(0 0 1) surface at room temperature to generate Si and Ge hydrides. The dissociation of Si- and Ge-hydride species is found to strongly depend on the Ge concentration of the SiGe crystal. At a low Ge concentration of 9%, Si monohydride (SiH) and dihydride (SiH2) are preferentially produced as compared to the higher Si hydride, SiH3. At higher Ge concentrations of 19%, 36%, on the other hand, monohydrides of SiH and GeH and trihyderide SiH3 are favorably generated at the initial stage of the adsorption. We interpret that when SiH4 adsorbs on the SiGe surface, hydrogen atoms released from the SiH4 molecule stick onto Ge or Si sites to produce Si or Ge monohydrides and the remaining fragments of -SiH3 adsorb both on Si and Ge sites. The SiH3 species is readily decomposed to lower hydrides of SiH and SiH2 by releasing H atoms at low Ge concentrations of 0% and 9%, while the decomposition is suppressed by Ge in cases of 19% and 36%.  相似文献   

3.
We have investigated the glow discharge plasma of SiH4–NH3 mixture by CARS. The decomposition rate of NH3 is linearly dependent on SiH4 partial pressure but that of SiH4 is not affected by the mixing ratio.  相似文献   

4.
Chemical reactions induced by CO2-laser radiation in mixtures of silane and hexafluoroacetone afford various gaseous silicon- and carbon-containing compounds and result in deposition of microstructures of carbon, C/F/O and Si/C/O/F materials. These products are suggested to be formed by a variety of exothermic reactions initiated through SiH4-photosensitized decomposition of hexafluoroacetone. Silane is shown to be a very potent reagent for the reduction of C-F bonds.  相似文献   

5.
Condensation of gaseous monosilane-argon and monosilane-helium mixtures was investigated in free jets by a Rayleigh scattering laser diagnostic technique. The condensation of a SiH4-Ar mixture begins to develop at a lower stagnation pressure and at a shorter distance from the nozzle, and proceeds at a higher rate, as compared to condensation in monosilane-helium and pure argon jets. The results of Rayleigh scattering measurements in condensing monosilane-argon jets scale with the parameter P 0 d 0.8. An analysis of the results obtained in this study and found in literature suggests that simultaneous monosilane-argon condensation lead-ing to the formation of mixed clusters takes place in the monosilane-argon mixture.  相似文献   

6.
《Surface science》1995,325(3):L441-L447
Scanning tunneling microscopy (STM) was used to investigate room temperature adsorption and dissociation of SiH4 on Si(111)(7 × 7) surfaces. The data show a pronounced site selectivity for this process. Initially the reaction involves exclusively the corner holes and the adjacent Si adatoms of the (7 × 7) reconstruction, with preferential adsorption of SiH3 groups in the corner holes and of H atoms on one of the adjacent corner adatoms. For higher SiH4 exposures the reactivity of the corner adatoms is significantly reduced, hydrogen adsorption occurs preferentially on the center adatoms. Deposited SiHx groups (x = 2, 3) nucleate now in small clusters on the terraces. A higher density of these SiHx clusters on domain boundaries or at steps indicates a higher reactivity of these defect sites.  相似文献   

7.
Cross sections are provided for most important collision processes of the Silicon‐Hydrides from the “Silanefamily”: SiHy (y = 1 ? 4) molecules and their ions SiH+y, with (plasma) electrons and protons. The processes include: electron impact ionization and dissociation of SiHy, dissociative excitation, ionization and recombination of SiH+y ions with electrons, and charge ‐ and atom ‐ exchange in proton collisions with SiHy. All important channels of dissociative processes are considered. Information is also provided on the energetics (reactants/products energy loss / gain) of each individual reaction channel. Total and partial cross sections are presented in compact analytic forms. The critical assessment of data, derivation of new data and presentation of results follow closely the concepts of the recently published related databases for Carbon‐Hydrides, namely for the Methane family [1, 2], and for the Ethane‐ and the Propane families [3], respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Amorphous alloys of Si and Ge have been prepared over the entire composition range by r.f. plasma decomposition of mixed gases of SiH4 and GeH4. The optical absorption edge is found to have a linear dependence on alloy composition given by: Eg = 0.95 + 0.70x (eV).  相似文献   

9.
Si纳米量子点的LPCVD自组织化形成及其生长机理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用低压化学汽相沉积(LPCVD)方法,依靠纯SiH4气体分子的表面热分解反应, 在由Si—O—Si键和由Si—OH键终端的两种SiO2表面上,自组织生长了Si纳米量子点. 实 验研究了所形成的Si纳米量子点密度随SiO2表面的反应活性位置数、沉积温度以及反应气 压的变化关系. 依据LPCVD的表面热力学过程,定性地分析了Si纳米量子点的形成机理.研究结果对具有密度分布均匀和晶粒尺寸可控的Si纳米量子点的自组织生长,以及Si基新型量子电子器 关键词: Si纳米量子点 LPCVD 自组织化形成 生长机理  相似文献   

10.
For hydrogenated amorphous silicon (a-Si:H) film growth governed by SiH3 plasma radicals, the surface reaction probability β of SiH3 and the silicon hydride (-SiHx) composition of the a-Si:H surface have been investigated by time-resolved cavity ringdown and attenuated total reflection infrared spectroscopy, respectively. The surface hydride composition is found to change with substrate temperature from -SiH3-rich at low temperatures to SiH-rich at higher temperatures. The surface reaction probability β, ranging from 0.20 to over 0.40 and with a mean value of β=0.30±0.03, does not show any indication of temperature dependence and is therefore not affected by the change in surface hydride composition. It is discussed that these observations can be explained by a-Si:H film growth that is governed by H abstraction from the surface by SiH3 in an Eley-Rideal mechanism followed by the adsorption of SiH3 at the dangling bond created.  相似文献   

11.
The adsorption of silane and methylsilane on the (1 1 0) and polycrystalline surfaces of gold is examined using vibrational electron energy loss spectroscopy (VEELS), angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) and X-ray photoelectron spectroscopy (XPS). Adsorption of silane onto the Au(1 1 0) surface at low temperatures is dissociative and yields an SiH2 and possibly also SiH3 surface species. Further dissociation occurs at room temperature to yield adsorbed SiH, which is tilted on the surface, with complete dissociation to Si occurring by 110 °C. The similarity in the UP spectra for silane adsorbed on the polycrystalline sample suggests that the same surface species are present over that temperature range. Above 200 °C, spectral changes suggest rearrangement of the Si atoms, which, by 350 °C, have diffused into the bulk. Adsorption of methylsilane onto the (1 1 0) surface at low temperatures initially produces adsorbed CH3SiH or CH3SiH2, with undissociated methylsilane physisorbing at higher exposures. By room temperature, desorption and decomposition leaves (or direct adsorption yields) only adsorbed CH3Si. After further heating, the hydrogen-carbon bonds of the CH3 group break to leave an adsorbed SiC species. On the polycrystalline surface, methylsilane adsorption is the same at low temperatures as on (1 1 0). In contrast to the latter, though, the UP spectra indicate that direct exposures at room temperature yield adsorbed Si or SiC initially, with CH3Si again adsorbing at higher exposures. Upon further heating to 330 °C, little if any methyl-groups remain on the surface and the Si has started to diffuse into the bulk.  相似文献   

12.
ABSTRACT

Thermal rate constants for chemical reactions using improved canonical variational transition state theory (ICVT) with small-curvature tunnelling (SCT) contributions in a temperature range 180–2000 K are reported. The general procedure is used with high-quality ab initio computations and semi-classical reaction probabilities along the minimum energy path (MEP). The approach is based on a vibrational adiabatic reaction path and is applied to the multiple-channel hydrogen abstraction reaction H + SiH3CH3 → products and its isotopically substituted variants. All the degrees of freedom are optimised and harmonic vibrational frequencies and zero-point energies are calculated at the MP2 level with the cc-pVTZ basis set. Single-point energies are calculated at a higher level of theory; CCSD(T)-F12a/VTZ-F12. ICVT/SCT rate constants show that the quantum tunnelling contributions at low temperatures are relatively important and the H-abstraction channel from SiH3 group of SiH3CH3 is the major pathway. The total rate constants are given by the following expression: ktot(ICVT/SCT) = 2.29 10?18 T2.42 exp(?350.9/T) cm3 molec?1 s?1. These calculated rates are in agreement with the available experiments. The ICVT/SCT method is further exploited to predict primary and secondary kinetic isotope effects, respectively).  相似文献   

13.
利用通用型交叉分子束研究了氯原子与硅烷的反应,观测到SiH3Cl+H通道. 测量到产物SiH3Cl在实验坐标下的角度分辨的飞行时间谱,获得了这个通道质心坐标下的产物角分布和动能分布. 结果表明,相对于氯原子束方向,产物SiH3Cl主要是后向散射,说明这个通道主要是通过典型的双分子亲核取代反应(SN2)机理进行的.  相似文献   

14.
Temperature effects on deposition rate of silicon nitride films were characterized by building a neural network prediction model. The silicon nitride films were deposited by using a plasma enhanced chemical vapor deposition system and process parameter effects were systematically characterized by 26−1 fractional factorial experiment. The process parameters involved include a radio frequency power, pressure, temperature, SiH4, N2, and NH3 flow rates. The prediction performance of generalized regression neural network was drastically improved by optimizing multi-valued training factors using a genetic algorithm. Several 3D plots were generated to investigate parameter effects at various temperatures. Predicted variations were experimentally validated. The temperature effect on the deposition rate was a complex function of parameters but N2 flow rate. Larger decreases in the deposition rate with the temperature were only noticed at lower SiH4 (or higher NH3) flow rates. Typical effects of SiH4 or NH3 flow rate were only observed at higher or lower temperatures. A comparison with the refractive index model facilitated a selective choice of either SiH4 or NH3 for process optimization.  相似文献   

15.
Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH4). The coating was performed by sequential reaction of SiH4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.  相似文献   

16.
张海龙  刘丰珍  朱美芳  刘金龙 《中国物理 B》2012,21(1):15203-015203
The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated. The plasma ignition condition is modified by varying the ratio of SiH4 to H2 (RH). For plasma ignited with a constant gas ratio, the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Hα to SiH* (I/ISiH*) at the initial stage, which leads to a thick amorphous incubation layer. For the ignition condition with a profiling RH, the higher I/ISiH* values are realized. By optimizing the RH modulation, a uniform crystallinity along the growth direction and a denser μ c-Si:H film can be obtained. However, an excessively high I/ISiH* may damage the interface properties, which is indicated by capacitance-voltage (C-V) measurements. Well controlling the ignition condition is critically important for the applications of Si thin films.  相似文献   

17.
The analysis of the ‘wiggle-beat’ patterns produced by rapid passage through simple NMR multiplets is modified and extended to permit analysis of beats from multiplets where adjacent signals are not equally separated and where the intensities are not necessarily in the ratio of the appropriate binomial coefficients. The simple example of mono-silane-d1 (SiH3D) is illustrated: J HD = 0·427 ± 0·003 c/s. Allowance is also made for the finite time of passage through the signal and the usefulness of this demonstrated by analysing the beat pattern from the asymmetric spectrum of a mixture of SiH3D and SiH4. In this way the SiH4-SiH3D chemical shift is estimated to be 0·0080 ± 0·0005 p.p.m., the SiH4 resonance being to low field.  相似文献   

18.
Silane (SiH4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H2. The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane and reaction of hydrogen with Re gasket. From the data of a previous experimental report [M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319 (2008) 1506], the claimed high-pressure metallic and superconducting phase of silane is identified as platinum hydride, that forms after the decomposition of silane. These observations show the importance of taking into account possible chemical reactions that are often neglected in high-pressure experiments.  相似文献   

19.
The proton and deuteron magnetic resonance spectra of CH4, CH3D, CH2D2, CHD3, CD4, SiH4, SiH3D, SiH2D2, SiH3D, SiD4, GeH3D, dissolved in nematic liquid crystals, are reported. It was found that these molecules, which are essentially tetrahedral, exhibit anisotropic interactions and are partially oriented in the nematic phase. This effect is presumably due to slight deformations induced by the anisotropic medium. Some of the aspects related to the interpretation of the results are discussed.  相似文献   

20.
The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the SiNx:H film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. For optimizing surface layer in crystalline silicon solar cells, by varying gas mixture ratios (SiH4 + NH3 + N2, SiH4 + NH3, SiH4 + N2), the hydrogenated silicon nitride films were analyzed for its antireflection and surface passivation (electrical and chemical) properties. The film deposited with the gas mixture of SiH4 + NH3 + N2 showed the best properties in before and after firing process conditions.The single crystalline silicon solar cells fabricated according to optimized gas mixture condition (SiH4 + NH3 + N2) on large area substrate of size 156 mm × 156 mm (Pseudo square) was found to have the conversion efficiency as high as 17.2%. The reason for the high efficiency using SiH4 + NH3 + N2 is because of the good optical transmittance and passivation properties. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号