首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of polyalkenes was investigated as a recycling route for the production of petrochemical feedstock. Low-density polyethylene (LDPE) and polypropylene (PP) were thermally decomposed individually in a batch reactor at 450 °C, thus forming oil/wax products. Then these products were dissolved in primary heavy naphtha to obtain steam cracking feedstock. The selectivity and kinetics of copyrolysis for 10 mass% solutions of oil/waxes from LDPE or PP with naphtha in the temperature range from 740 to 820 °C at residence times from 0.09 to 0.54 s were studied. The decomposition of polyalkene oil/waxes during copyrolysis was confirmed. It was shown that the yields of the desired alkenes (ethene, propene), according to polymer type, increased or only slightly decreased compared to the yields from naphtha.In addition to the primary reactions, the secondary reactions leading to coke formation have also been studied. The formation of coke during copyrolysis of LDPE wax with naphtha was comparable to the coking of pure naphtha. Slightly higher formation of coke was obtained at PP wax solution at the beginning of the measurements, on the clean surface of the reactor. After a thin layer of coke covered the walls, the production was the same as that from naphtha. The results confirm the possibility of polyalkenes recycling via the copyrolysis of polyalkene oils and waxes with conventional liquid steam cracking feedstocks on already existing industrial ethylene units.  相似文献   

2.
延迟焦化工艺弹丸焦生成的实验研究   总被引:1,自引:0,他引:1  
以光学结构分析为主要表征手段,在小型焦化装置上,研究了弹丸焦的生成历程,以及原料性质、焦化工艺操作条件对弹丸焦生成的影响,分析了其原因,在此基础上提出了相应的抑制措施。结果表明,弹丸焦成焦历程为:原料→不稳定中间相小球体→镶嵌型中间相→弹丸焦;沥青质残炭之比大于0.5、氢碳原子比小于1.5、胶体稳定性参数小于3.5的焦化原料易生成弹丸焦;不同循环馏分对弹丸焦的抑制效果不同,以焦化重蜡油(420~500℃)的抑制作用最大;通过采取降低反应温度、升高反应压力、增大循环比以及向反应体系中添加一定量四氢萘或催化油浆等措施,可以抑制弹丸焦的生成。  相似文献   

3.
The steam cracking (copyrolysis) of naphtha with oils/waxes from thermal decomposition of polyalkenes has been investigated as a process for chemical recycling of plastic wastes. High-density polyethylene (HDPE), two-component mixture (LDPE/PP) and three-component mixture (HDPE/LDPE/PP) were thermally decomposed in a batch reactor at 450 °C, thus forming oil/wax products. Subsequently, these products were dissolved in heavy naphtha in the amount of 10 mass% to obtain steam cracking feedstock. The composition of gaseous and liquid products during copyrolysis was studied at 780 °C and 820 °C in dependence on residence time from 0.08 s to 0.51 s. The obtained results were compared with the product composition from steam cracking of naphtha at identical experimental conditions. The decomposition of polyalkene oils/waxes during copyrolysis was confirmed on the basis of analysis of liquid products. It was shown that more ethene and propene was formed during copyrolysis of oil/wax from HDPE in comparison with naphtha and both mixtures and so oil/wax from HDPE seems to be favourable component of steam cracking feedstock. There were slight differences between product compositions from copyrolysis of two- and three-component mixtures. The presence of HDPE in three-component mixture supported formation of gas and ethene. The presence of oil/wax form PP enhanced formation of propene and branched alkenes. For both type of polyalkenic mixtures the yields of desired low molecular alkenes and alkanes were higher or approximately the same as from naphtha. The results confirm suitability of oils/waxes from polyalkenes as a co-feed for steam cracking units.  相似文献   

4.
利用提升管中试实验装置,研究了催化汽油二次裂化制丙烯过程中热裂化、氢转移反应的特点和影响因素,给出了不同反应条件对丙烯选择性的影响,考察了丙烯选择性最大点处热裂化反应、氢转移反应的变化。研究结果表明,采用适当的反应温度和剂油比以及缩短反应时间能有效抑制热裂化反应和氢转移反应的发生,提高丙烯的选择性。  相似文献   

5.
The catalytic cracking of heavy fuel oil was investigated over the equilibrium fluid catalytic cracking catalyst (E-Cat) as a base component with the mesoporous MCM-41 as an additive. The catalytic performance of the E-Cat/MCM-41 system was assessed in a fixed-bed MAT unit. The reaction was performed at temperatures of 500, 530, 550 and 600°C and the product distributions in both gaseous and liquid phases were studied. The yields of products including light olefins, liquefied petroleum gas (LPG), gasoline, dry gas, coke and also the conversions obtained over different temperatures were reported and some generalities discussed. The maximum yield of propylene (17.5%) was obtained at 550°C whereas the highest conversion and gasoline yield was gained at 530°C. An eight-lump kinetic model containing 11 kinetic parameters was considered. Those parameters were estimated based on experimental data at specific temperatures by fourth order Runge–Kutta algorithm and the least square method. In addition, Arrhenius equation was used to calculate apparent activation energies. The calculated data of the product yields were in a close agreement with the experimental data.  相似文献   

6.
焦化蜡油催化裂化产物氮分布的研究   总被引:2,自引:0,他引:2  
催化裂化(FCC)原料正向重质化和多样化发展,如何利用催化裂化装置加工焦化蜡油(CGO)成为各炼油厂扩大FCC原料来源和挖潜增效的重要途径。与直馏蜡油(VGO)相比,CGO突出的特点心0是碱性氮化物的质量分数高。中国由于受加氢装置和氢源的限制,CGO一般不加氢而采用直接掺炼的方法,这样不仅存在CGO催化裂化转化过程中FCC催化剂碱氮中毒严重的问题,而且还存在反应后由于部分含氮化合物会直接或间接进入汽油、柴油馏分中,影响产物安定性等问题。为此,对CGO催化裂化转化过程中氮化物的研究引起了研究者的重视。  相似文献   

7.
Kinetics of thermal reactions of coal with polystyrene by TGA and DSC methods was studied. In the range of about 350-550°C a thermal degradation of coal proceeds, and gas, tar and coke are evolved. Simultaneously, decomposition of polystyrene occurs (360-470°C). Unsaturated products of polystyrene decomposition are hydrogenated by coal, because coal is a strong H-donor. Moreover, some aromatic products react with coal tar structures and new aromates are formed. The yield of tar from copyrolysis is then higher in comparison with pyrolysis of coal alone. Kinetic parameters of the process were evaluated and discussed.  相似文献   

8.
Bentonites, when pillared with Al2O3-oxide clusters, can generate materials with BET surface area in the 290–310 m2 g−1 range having high cracking activity for gas oil conversion. The high coke make tendency of these catalysts has been attributed to their strong Lewis type acidity.Mössbauer and X-ray photoelectron spectroscopy have shown that iron in pillared clays can be found on the clay platelets, between the clay silicate layers or in the clay octahedral layer in substitution for Al. On heating, iron migration occurs. When iron is found near the pillars it can easily catalyze secondary cracking reactions and greatly enhances the already high coke make generation observed during gas oil conversion.  相似文献   

9.
Utilization of oils/waxes obtained from thermal cracking of individual LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), PP (polypropylene), or cracking of mixed polymers PP/LDPE (1: 1 mass ratio), HDPE/LDPE/PP (1: 1: 1 mass ratio), HDPE/LDPE/LLDPE/PP (1: 1: 1: 1 mass ratio) for the production of automotive gasolines and diesel fuels is overviewed. Thermal cracking was carried out in a batch reactor at 450°C in the presence of nitrogen. The principal process products, gaseous and liquid hydrocarbon fractions, are similar to the refinery cracking products. Liquid cracking products are unstable due to the olefins content and their chemical composition and their properties strongly depend on the feed composition. Naphtha and diesel fractions were hydrogenated over a Pd/C catalyst. Bromine numbers of hydrogenated fractions decreased to values from 0.02 g to 6.9 g of Br2 per 100 g of the sample. Research octane numbers (RON) before the hydrogenation of naphtha fractions were in the range from 80.5 to 93.4. After the hydrogenation of naphtha fractions, RON decreased to values from 61.0 to 93.6. Diesel indexes (DI) for diesel fractions were in the range from 73.7 to 75.6. After the hydrogenation of diesel fractions, DI increased up to 104.9.  相似文献   

10.
在小型固定流化床装置上采用酸性催化剂进行了多系列不同反应深度的催化裂化实验,对大庆VGO催化裂化过程中发生的质子化裂化反应进行了初步的研究。在重质油的催化裂化过程中会出现二次质子化裂化反应。二次质子化裂化反应主要是由于汽油中烷烃重新在酸性催化剂上形成五配位正碳离子随后分解所造成,其产生的原因主要是由于反应后期催化剂对反应中间产物的选择性吸附改变所致。二次质子化裂化反应对温度不敏感。大庆VGO在500℃下反应时二次质子化裂化反应约占整个质子化裂化反应的60%。  相似文献   

11.
Coker naphtha was separated into ten distillation fractions equal in volume via Engler distillation. It was found that the mercaptan sulphur compounds were mainly concentrated in the lighter fractions, whereas the basic nitrogen compounds were concentrated in the heavier fractions. The gum content increased gradually with increasing the boiling point of each fraction after storage for 21 days under ambient conditions (25°C, 101 kPa). The active organic acidic compounds in coker naphtha extracted with aqueous solution of 20 mass % NaOH represented 0.26 mass %. The GC-MS analysis of the active organic acidic compounds showed the amounts of small molecule thiols, thiophenols (including benzyl mercaptan) and phenolic compounds to be 2.6%, 4.4% and 90.0%, respectively. After removal of the active acidic compounds by caustic scrubbing, the increase in the rate of gum formation was much slower than that of the blank coker naphtha after 27 days of storage under ambient conditions, indicating that the effect of these acidic compounds on the gum formation is more significant than with basic nitrogen compounds. It is demonstrated that the storage stability of coker naphtha was decreased in the presence of large amounts of phenolic compounds, which may accelerate the acid-catalysed polymerisation of olefins.  相似文献   

12.
The monomer 3,3-diphenyl-6-aminophthalide was synthesized in a 20% yield by the following sequence of reactions: nitration of phthalimide, hydrolysis and dehydration to 4-nitrophthalic anhydride, Friedel–Crafts reaction with benzene to 2-benzoyl-5-nitrobenzoic acid, cyclization with thionyl chloride to the pseudoacid chloride, Friedel–Crafts reaction with benzene, and, finally, reduction of the nitro group to the amino function with Adams catalyst. Although the five-substituted isomer is also possible, it was obtained in yields of only one-fifth to one-tenth of those for the 6-substituted isomer. The 3,3-diphenyl-6-aminophthalide underwent polymerization with difficulty to yield low-molecular-weight polyimidines (inherent viscosity up to 0.68 dl/g) in reasonable yields (32?88%). Because of the rigid character of the backbone and steric crowding, conditions for polymerization were rather severe: 1–2 days at 180–225°C in nitrobenzene or polyphosphoric acid or 350°C in a sealed tube. The addition of sand to the reactants in the sealed tubes caused an increase in yield and molecular weight. The polymers were subjected to thermogravimetric analysis in air and nitrogen. The temperatures at which a 10% weight loss occurred were as high as 440°C in air and 510°C in nitrogen. These stabilities were similar to those encountered for previously synthesized all-aromatic polyimidines.  相似文献   

13.
Thermal reactivities of lignin pyrolysis intermediates, catechols/pyrogallols (O-CH3 homolysis products) and cresols/xylenols (OCH3 rearrangement products), were studied in a closed ampoule reactor (N2/600 °C/40-600 s) to understand their roles in the secondary reactions step. Reactivity tends to be enhanced by increasing the number of substituent groups on phenol and this effect was greater for -OH than for -CH3. Thus, catechols/pyrogallols were more reactive than cresols/xylenols and syringol-derived products were more reactive than corresponding guaiacol-derived products. Catechols/pyrogallols were effectively converted into CO (additionally CO2 in the case of pyrogallols) in the early stage of pyrolysis. In contrast, cresols/xylenols were comparatively stable and produced H2, CH4 and demethylation products (cresols and phenol) after prolonged heating. All intermediates except phenol and 2-ethylphenol formed coke during a long heating time of 600 s (second stage coking). Based on the present results, the roles of intermediates in tar, coke and gas formation from guaiacol and syringol are discussed at the molecular level, focusing on their differences. Molecular mechanisms of gas formation from pyrogallols and demethylation of cresols/xylenols are also discussed.  相似文献   

14.
The effects of temperature and Fe loading over multi wall carbon nano tube catalysts in thermal catalytic cracking of naphtha to produce light olefins have been studied in this paper. The CCD method was utilized and a set of experiments were designed and carried out. The temperature and loading varied from 572 to 628 °C and 0.34 to 11.66 wt.% Fe, respectively. In order to determine the effects of the variation of the operating conditions on the yield distributions, a set of statistical models were utilized and the maximum point of the yield of each product was determined. The maximum yield of ethylene (18.84 wt.% of product) and propylene (12.85 wt.% of product) was obtained at 628 °C and 10.6 wt.% loading of Fe over CNTs. Finally, thermal cracking of naphtha was carried out and was compared with thermal catalytic cracking of naphtha. As a result, at 620 °C, the yield of ethylene and propylene in thermal-catalytic cracking was 6.3% and 4.7%, respectively, more than those in thermal cracking of naphtha.  相似文献   

15.
Thermal cracking of waste cooking oil (WCO) for production of liquid fuel has gained special interest due to the growing demand of renewable fuel, depleting fossil fuel reserves and environmental issues. In the present work, thermal cracking of WCO to produce liquid hydrocarbon fuels without any preprocessing has been studied. Moreover, non-isothermal kinetics of WCO using thermogravimetric analysis (TGA) has been studied under an inert atmosphere at various heating rates. According to TGA result, active thermal decomposition of WCO was found to be between 318 and 500 °C. Furthermore, the temperature at which the maximum mass loss rate attained was shifted to higher values as the heating rates increased from 10 to 50 °C min?1 and the values were found to be approximately similar to that of R 50. Besides, model-free iso-conversion kinetic methods such as Friedman (FM), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were used to determine the activation energies of WCO degradation. The average activation energy for the thermal degradation of WCO was found to be 243.7, 211.23 and 222 kJ mol?1 for FM, KAS and FWO kinetic methods, respectively. Additionally, the cracking of WCO was studied in a semi-batch reactor under an inert atmosphere and the influences of cracking temperature, time and heating rates on product distribution were investigated. From the reaction, an optimum yield of 72 mass% was obtained at a temperature of 475 °C, time of 180 min and a heating rate of 10 °C min?1. The physicochemical properties studied were in accordance with ASTM standards.  相似文献   

16.
为了从分子水平快速经济地分析重质油在热转化过程中的变化规律,利用四种模型化合物萘、四氢萘、十氢萘和正庚烷组成的混合体系来模拟重质油及其热转化缩合产物分子的基本组成,研究其红外吸收特性与平均分子参数(亚甲基和甲基的数目之比 N CH2/NCH3、芳氢率faH、芳香环系氢碳原子比NHar/NCar等)的关系。将重质油焦化重蜡油馏分进行轻度热转化,利用不同强度的系列溶剂将热转化产物的重质馏分顺序分离成系列溶剂族组分,将这些族组分进行红外分析。结果表明,混合物系列模拟体系的〖WTBX〗f〖WTB1〗aH同其红外吸收在2750cm-1~3100cm-1的3000cm-1~3100cm-1强度分率(S3000~3100/S2750~3100)之间存在良好的线性关系,同时NCH2/NCH3 同2920cm-1和2960cm-1处的吸光度比值A2920/A2960之间也存在良好的线性关系。依据这些关系式可以合理解释重质油分子在热转化过程中分子结构的变化规律。随着重质油热转化的进行,NCH2/NCH3 饱和烃分子先增大后减小,芳香性族组分分子则持续降低;faH或NHar/NCar芳香性族组分分子呈现升高的趋势。  相似文献   

17.
以哈密热解焦油重质馏分悬浮床加氢裂化后的轻质油为原料,对其性质进行了分析,轻质油保留了煤的基本单元结构特点,富含芳烃类和环烷烃类化合物,氮含量较高;采用200 mL固定床精制-裂化串联装置,对轻质油原料进行了加氢裂化制取石脑油的研究;反应压力15 MPa下,考察了不同温度对加氢裂化反应的影响。结果表明,适宜的裂化段温度为390℃,此温度下,180℃馏分转化率为53.69%,氢耗5.13%,180℃石脑油收率56.8%,裂化后石脑油主要以C_(6-9)类烃类物质为主,其中,环烷烃含量为71.99%,芳烃含量3.13%,芳潜值70.1;以最佳工艺条件下产出裂化石脑油为原料,进行了催化重整制取BTXE的研究,采用石油系中间基石脑油作为对比,裂化石脑油重整后BTXE类物质总产率为55.85%,较石油基石脑油生成量高25.53%,彰显了煤基油的优势和特点,验证了煤热解重油裂化石脑油是制取BTXE类物质良好的原料。  相似文献   

18.
Wettability alteration is an important mechanism to increase recovery from oil and gas reservoirs. In this study, effect of fluorine-doped silica coated by fluorosilane nanofluid on wettability alteration of carbonate rock was investigated. The nanoparticle synthesized by sol-gel method was characterized using XRD, FTIR, SEM, and DLS. Adsorption of nanoparticle on rock was characterized by FESEM, and composition of rock after treatment was determined by EDXA. Effect of nanofluid on wettability was investigated by measuring static, advancing, and receding contact angle and surface free energy, imbibition of water, crude oil, and condensate of untreated and treated carbonate rock. Also, stability of contact angle and thermal stability of nanofluid were studied. ?Results show that contact angles for water, condensate, and crude oil were altered from 37.95°, 0°, ?and 0° to 146.47°, 145.59°, and 138.24°. In addition, water, condensate, and oil imbibition ?decreased more than 87, 88, and 80%, indicating that wettability was altered from strongly oil wet, ?condensate wet, and water wet to strongly gas wet. The ultraoleophobic and ultrahydrophobic stability were >48 hours and 120 minutes. Surface free energy of treated rock for water, crude oil, and condensate was ?2.24, 1.17, and 1.47mN/m. Thermal stability of nanofluids and adsorbed nanoparticle was up to 150°C.  相似文献   

19.
The paper presents the results of Dynamic-Mechanical Thermal Analysis (DMTA) for a selected methacrylate adhesive at the frequency range from 1 to 50?Hz and the heating rate of 1 and 3?°C/min, in the range from –70?°C to 180?°C. On the basis of the test results, the glass transition temperature was evaluated for three calculation methods. Master curves were also designated for three different reference temperatures: –20, +20 and +60?°C. Master curves were calculated using shift factors aT - calculated by numerical method.  相似文献   

20.
Thermal and catalytic degradation of pyrolytic oil obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste was studied by using fluid catalytic cracking (FCC) catalyst in a bench scale reactor. The characteristics of raw pyrolytic oil and also thermal and catalytic degradation of pyrolytic oil using FCC catalyst (fresh and spent FCC catalyst) under rising temperature programming was examined. The experiments were conducted by temperature programming with 10 °C/min of heating rate up to 420 °C and then holding time of 5 h. During this programming, the sampling of product oil was conducted at a different degradation temperature and also different holding time. The raw pyrolytic oil showed a wide retention time distribution in GC analysis, from 5 of carbon number to about 25, and also different product characteristics with a comparison of those of commercial oils (gasoline, kerosene and diesel). In thermal degradation, the characteristics of product oils obtained were influenced by reaction temperature under temperature programming and holding time in the reactor at 420 °C. The addition of FCC catalyst in degradation process showed the improvement of liquid and gas yield, and also high fraction of heavy hydrocarbons in oil product due to more cracking of residue. Moreover, the characteristic of oil product in catalytic degradation using both spent and fresh FCC catalysts were similar, but a relatively good effect of spent FCC catalyst was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号