首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a theoretical study on the effects of intense laser field(ILF) and static electric field on the linear and nonlinear optical properties of a cylindrical quantum dot with Rosen-Morse axial potential under the framework of effective mass and parabolic band approximations. This study also takes into account the effects of the structure parameters(η, V_1, and R). The analytical expressions of the linear, third-order nonlinear and total optical absorption coefficients(TOACs)and the relative refractive index changes(RRICs) are obtained by using the compact-densitymatrix approach. The results of numerical calculations show that the resonant peak position of the TOACs and RRICs shifts towards lower energies and the magnitude of the peak increases with the effect of the static electric field and ILF. In addition, it is observed that while the resonant energies of the TOACs and RRICs of system shift towards the higher(lower) energies with the enhancement of η, V_1, they decrease with the augmentation of R. Thus, the findings of this study show that the optical properties of the structure can be adjusted by changing the magnitude of structure parameters and applied external fields.  相似文献   

2.
In the present work, we intend to study the pressure effect on optical properties of spherical quantum dots by using the modified Gaussian potential. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated for different hydrostatic pressures. According to the results obtained from the present work, it is deduced that: (i) the linear, nonlinear and total refractive index changes decrease and shift towards higher energies when the pressure increases and (ii) the linear, nonlinear and total absorption coefficients increase and shift towards higher energies by increasing the pressure.  相似文献   

3.
An investigation of an exciton bound in a parabolic two dimensional quantum dot by a donor impurity has been carried out by using the matrix diagonalization method and the compact density-matrix approach. The linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s-p, p-d, and d-f transitions. The results show that the parabolic potential has a great effect on the optical absorptions. The calculated results also reveal that as the angular momentum quantum numbers of transitions increase, the optical absorption and refractive index peaks shift towards lower energies and the absorption and refractive index intensities increase.  相似文献   

4.
In this paper, the effects of hydrostatic pressure, temperature and intense laser field on the linear and nonlinear optical processes in the conduction band of a square quantum well are numerically investigated in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results are presented for typical square GaAs/AlxGa1?xAs single quantum well system. The nonlinear optical absorption and refractive index changes depending on the hydrostatic pressure and intense laser field are investigated for two different temperature values. The results show that the intense laser field, the hydrostatic pressure and the temperature have a significant effect on the optical characteristics of these structures.  相似文献   

5.
The optical absorptions of an exciton with the higher excited states in a disc-like quantum dot are investigated. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. With typical semiconducting GaAs based materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s–p, p–d, and d–f transitions. The results show that as the angular momentum quantum number of transitions increases, the absorption peaks shift towards lower energies and the absorption intensities increase.  相似文献   

6.
In this work we are studying the intense laser effects on the electron-related linear and nonlinear optical properties in GaAs–Ga1?xAlxAs quantum wells under applied electric and magnetic fields. The calculated quantities include linear optical absorption coefficient and relative change of the refractive index, as well as their corresponding third-order nonlinear corrections. The nonlinear optical rectification and the second and third harmonic generation coefficients are also reported. The DC applied electric field is oriented along the hererostructure growth direction whereas the magnetic field is taken in-plane. The calculations make use of the density matrix formalism to express the different orders of the dielectric susceptibility. Additionally, the model includes the effective mass and parabolic band approximations. The intense laser effects upon the system enter through the Floquet method that modifies the confinement potential associated to the heterostructure. The results correspond to several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation. They suggest that the nonlinear optical absorption and optical rectification are nonmonotone functions of the dimensions of the heterostructure and of the external perturbations considered in this work.  相似文献   

7.
利用量子力学中的密度矩阵算符理论和迭代方法,导出莫尔斯(Morse)势阱中线性和三阶非线性光折射率改变的解析表达式,并以典型的GaAs/AlGaAs Morse势阱为例进行数值计算。数值结果表明,随着入射光强度增强,总的折射率改变将减少;随着势阱参数a的增大,总的折射率改变将减小;而随着载流子浓度的增加,总的折射率改变将增加。结果表明要获得较大的折射率改变,则需选取较小的入射光强度,较小的参数a,较大的载流子浓度,从而为实验研究提供理论依据。  相似文献   

8.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

9.
The effect of non-resonant intense laser field on the intersubband-related optical absorption coefficient and refractive index change in the asymmetric n-type double δ-doped GaAs quantum well is theoretically investigated. The confined energy levels and corresponding wave functions of this structure are calculated by solving the Schrödinger equation in the laser-dressed confinement potential within the framework of effective mass approximation. The optical responses are reported as a function of the δ-doped impurities density and the applied non-resonant intense laser field. Additionally, the calculated results also reveal that the non-resonant intense laser field can be used as a way to control the electronic and optical properties of the low dimensional semiconductor nano-structures.  相似文献   

10.
In this article simultaneous effects of external electric field and spin-orbit interaction on the linear and the nonlinear optical properties of a cubic quantum dot are studied. Based on the non- degenerate perturbation method, energy eigenvalues and eigenfunctions of the system under the influence of spin-orbit interaction are calculated. Furthermore, the linear and the nonlinear optical absorption coefficients and refractive index changes are obtained using the compact density matrix approach and iterative method. Our results show that, due to the spin-orbit interaction, resonant peak values of the optical absorption coefficients and refractive index changes decrease and occur at lower values of the incident photon energy. The variation of these optical parameters depend on the spin-orbit interaction strength, dot dimensions and external electric field.  相似文献   

11.
The linear and the third-order nonlinear optical absorption coefficients and refractive index changes in a modulation-doped asymmetric double quantum well are studied theoretically. The electron energy levels and the envelope wave functions in this structure are calculated by the Schrödinger and Poisson equations self-consistently in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated as a function of right-well width (Lw2) of asymmetric double quantum well. Our results show that the total absorption coefficients and refractive index changes shift toward higher energies as the right-well width decreases. In addition, the total optical absorption coefficients and refractive index changes is strongly dependent on the incident optical intensity.  相似文献   

12.
The oscillator strength and the linear and third order nonlinear refractive index changes of a cylindrical quantum well wire under intense non-resonant laser field have been investigated within the effective mass-approximation by using a finite element method. We found that the laser amplitude, the incident light and the intersubband relaxation time have an important influence on the refractive index changes.  相似文献   

13.
A investigation of the linear and nonlinear optical properties for intersubband electronic transitions associated with a biexciton in a quantum dot has been performed by using the method of few-body physics. The optical absorption coefficients and the refractive index changes have been examined based on the computed energies and wave functions. It is over two orders of magnitude higher than that obtained in an exciton quantum dot. The results show that the optical absorption saturation intensity can be controlled by the confinement potential frequency and the relaxation time.  相似文献   

14.
The linear and nonlinear optical absorption coefficients and refractive index changes are obtained by using the compact density-matrix approach and an iterative procedure. With typical semiconducting GaAs materials, the linear, third-order nonlinear, total optical absorption coefficients and the optical refractive index have been examined. We find that the polaron effect has an important influence on the linear, third-order nonlinear, and total absorption coefficients as well as the refractive index changes.  相似文献   

15.
The linear and nonlinear optical properties of an electron, which is bounded to a Coulomb impurity in a polar semiconductor quantum dot with parabolic confinement in both two and three dimensions, are studied by using the Landau-Pekar variational method and the compact density-matrix approach. With typical semiconducting GaAs-based materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive indexes have been examined. We find that the all absorption spectra and refractive index changes are strongly affected by the electron-LO-phonon interaction. The results also indicate that the polaron effect increases with decreasing dimensionality of a quantum dot.  相似文献   

16.
An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolieity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolieity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities.  相似文献   

17.
A theoretical study of the effects of intense laser fields on the nonlinear properties of donor impurities in a quantum dot with Woods-Saxon potential is performed within the matrix diagonalization method with the use of the effective mass approximation. The great advantage of our methodology is that it enables confinement regimes by varying two parameters in the model potential. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Based on the computed energies and wave functions, the optical absorption coefficients and the refractive index between the ground state (L=0) and the first excited state (L=1) have been examined. Several configurations of the barrier height, the dot radius, the barrier slope of the confinement potential and the incident intense laser radiation have been considered. The outcome of the calculation suggests that all the factors mentioned above can influence the nonlinear optical properties strongly.  相似文献   

18.
A detailed theoretical study on the electron-related optical responses in triple δ-doped GaAs quantum wells in the presence of non-resonant, monochromatic intense laser field is presented. For this purpose, we first obtained the bound subband energy levels and their corresponding envelope wave functions of the structure for different central doping concentrations within the effective-mass approximation. Then, we calculate the effect of the non-resonant intense laser field on the optical properties of this structure using the compact-density-matrix approach via the iterative method. We found that the optical absorption coefficients and refractive index changes in the triple δ-doped GaAs quantum well can be modulated by changing the central doping concentration and the intensity of the non-resonant, monochromatic laser field. In addition, it is shown that a sufficiently intense laser field suppresses the multiple quantum well configuration towards a single potential well one and the optical response becomes practically independent of the δ-doping concentration.  相似文献   

19.
Optical absorption coefficients and refractive index changes associated with intersubband transition in a parabolic cylinder quantum dot are theoretically investigated. In this regard, the electronic structure of the dot is studied using the one band effective mass theory, and by means of the compact-density matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes are calculated. The effects of the size of the dot, optical intensity and electromagnetic field polarization on the optical absorption coefficient and refractive index changes are investigated. It is found that absorption and refractive index changes are strongly affected not only by the size of the dot but also by optical intensity and the electromagnetic field polarization.  相似文献   

20.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号