首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
聚乙二醇对聚醚砜微孔膜致孔作用的研究   总被引:1,自引:0,他引:1  
以聚醚砜聚乙二醇溶剂为铸膜液体系、采用干湿相转化法制备微孔滤膜,研究了各种制膜条件对膜孔径结构的影响.实验发现聚乙二醇在体系中起到分散稳定的作用,只有到浓度大于70%时,才会对铸膜液的粘度产生明显影响,聚合物在铸膜液中的溶解状态也随之改变,进而影响膜的结构.不同溶剂NMP、DMF、DMAc、DMSO等极性溶剂或固体溶剂己内酰胺均可制得开孔率较高的微孔膜,但对膜的结构和性能影响差别不大.在本研究体系中,膜的结构取决于聚乙二醇、溶剂的浓度比例关系.  相似文献   

2.
Asymmetric ultrafiltration (UF) membranes were prepared from blends of polyethersulfone (PES)/polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. Polyethylene glycol (PEG) with four different molecular weights was used as pore former and hydrophilic polymeric additive. N,N‐dimethylformamide (DMF) and water were used as solvent and coagulant (nonsolvent), respectively. The effects of different proportion of PES/PAN and molecular weight of PEG on morphology and performance of the prepared membranes were investigated. Performance of the membranes was evaluated using UF experiments of pure water and buffered bovine serum albumin (BSA) solution as feed. The contact angle measurements indicated that the hydrophilicities of PES/PAN membrane increase by increasing the PAN concentration in the casting solution. However, performance of the membranes improves by increasing the PAN concentration in the casting solution up to 20% and then decreases with further addition of PAN. It was found out that the rejection of BSA decreases with increasing the PAN concentration in the casting solution. Furthermore, it was found that the performance of the membranes increases by increasing the molecular weight of PEG up to 1500 Da and then decreases with the higher molecular weights. The morphology of the prepared membranes was studied by scanning electron microscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Microporous poly(vinylidene fluoride) (PVDF) membranes with asymmetric pore structure were prepared by a wet phase inversion process. The polymer was precipitated from a casting solution when immersed in a cold water (gelation) bath. The casting solution was, in most cases, composed of polymer, solvent, and nonsolvent. In this solvent-nonsolvent system, the solvents used were triethylphosphate (TEP) and dimethylsulfoxide (DMSO), and the nonsolvents used were glycerol and ethanol. Mean pore sizes and effective porosity of the microporous membranes were calculated using the gas permeation method. They were studied as a function of evaporation time of wet nascent film, polymer molecular weight, concentration of polymer, and concentration of nonsolvent. The morphology of the membranes was examined by scanning electron microscopy (SEM).  相似文献   

4.
To investigate the effect of poly(ethylene glycol) (PEG) 200 on membrane performance, asymmetric polyetherimide (PEI) membranes with a small pore size were prepared by dry/wet-phase inversion from the casting solution containing N-methyl-2-pyrrolidone as a solvent and poly(ethylene glycol) 200 as an additive. Our experiment revealed that the addition of PEG 200 has an influence on the casting solution properties, permeation properties, and resulting membrane structures. Moreover, a drying process also affects the formation of a dense skin layer. Increasing the amount of PEG 200 drastically improved the solute rejection rate. The drying process improved the rejection rate. We also observed the effect of the mixed solvent (water/ethanol) on permeation through the membranes with various pore sizes. In the case of the membrane with a dense skin layer, the solvent permeation showed relationships with solution viscosity, surface tension, and membrane-solvent interaction.  相似文献   

5.
Using diethylene glycol (DegOH) as non‐solvent additive (NSA) and N, N‐dimethylacetamide (DMAc) as solvent (S), polyethersulfone (PES) flat sheet membranes were prepared via immersion precipitation combined with the vapor induced phase separation (VIPS) process. Light transmittance was used to follow the precipitation rate during the immersion process as well as during the VIPS stage. As the addition of the NSA, the viscosity of casting solutions increased, which led to a slow precipitation rate. Though the precipitation rate decreased, the instantaneous demixing type was maintained. High flux membranes were obtained only at a high mass ratio of NSA/S; producing membranes had cellular pores on the top surface and sponge‐like structure on cross section. The VIPS process prior to immersion precipitation was important for the formation of cellular pore on the surface. With the increase in exposure time, the liquid–liquid phase separation took place on the surface of casting solution; nucleation and growth induced the formation of cellular pore on the top surface. Coagulation bath temperature also had large effect on the precipitation rate; high temperature on coagulation bath mainly accelerated the transfer of solvent and non‐solvent. Higher flux membrane with a porous skin layer could be obtained at a high coagulation bath temperature, but at the same time the mechanism properties were weakened. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In the present work, the effect of adding nonsolvent in the casting solution on the porosity of asymmetric TPX (poly(4-methyl-1-pentene)) membranes was systematically investigated. A series of alcohols, with carbon number ranging from 2 to 14, was added in the casting solution (TPX/cyclohexane) to alter the porosity of two types of asymmetric TPX membranes, prepared by using ethanol and 1-propanol as the coagulation medium. It was found that the effect of nonsolvent on membrane porosity is different for the two types of membranes and the difference can be reasoned by considering the exchange rate between the polymer solvent and the coagulation medium during membrane formation. The results indicate that, for the membrane formation system with low exchange rate between coagulant and solvent, the membrane porosity is controlled by the coagulation value, defined as the volume of coagulant required to demix the casting solution. On the other hand, for the system with high exchange rate, the membrane porosity is not controlled by the coagulation value but by the penetration speed of the coagulant front moving through the casting solution.  相似文献   

8.
Hoyer B  Jensen N 《Talanta》1996,43(8):1393-1400
Phase inversion (PI) cellulose acetate membranes were cast on glassy carbon electrodes from a solution containing acetone as solvent and aqueous magnesium perchlorate as pore former. It is shown that a significant improvement of the reproducibility and permselective properties of the membrane is obtained by allowing complete evaporation of the solvent in a controlled humidity environment before the membrane is gelated. By using cadmium and lead as test analytes and differential pulse anodic stripping voltammetry as the detection method, it was found that the modification of the electrode greatly reduces the interference from albumin, lysozyme, gelatin and polyethylene glycol (MW 6000). The permselectivity of the PI membrane can be controlled by varying the amount of magnesium perchlorate in the casting solution and the relative humidity during the pre-gelation conditioning of the membrane.  相似文献   

9.
Asymmetric polysulfone membranes were prepared by wet phase inversion method with different demixing rate of casting solutions. The influent factor of demixing rate was focused on the polarity of additive in the polysulfone/N-methyl-2-pyrrolidone/water ternary system. With increasing the polarity of alcohols in the casting solution, the decrease in skin layer thickness was observed and then a poor separation performance of membranes can be obtained. It was found that the polar additive caused the rapidly demixing of casting solution in coagulation bath and formed porous asymmetric membranes with defective skin layer. In the other case, chloroform was used as the non-polar additive in casting solution. With increasing the mount of chloroform in the casting solution, the increase in skin layer thickness was observed and then lead to a good separation performance of these membranes. It was found that of the non-polar additive delays the demixing rate of casting solution in this ternary system. The separation performance of these asymmetric membranes were characterized by the measurement of dehydration of ethanol/water mixture by pervaporation and observed the morphology by scanning electron microscopy. It was found that the separation performance of asymmetric polysulfone membrane strongly depends on the polarity of adding solvent in polysulfone/N-methyl-2-pyrrolidone/water ternary system.  相似文献   

10.
制膜条件对PVDF膜形态结构的影响   总被引:19,自引:0,他引:19  
对干湿相转换法制备聚偏氟乙烯微孔膜进行了研究。利用光透射仪研究了不同制膜条件下成膜分相速度及其变化规律,用气体渗透法测定了膜的平均孔径和有效孔隙率,并结合电镜照片对不同制膜条件下膜的结构和性能进行了表征。实验结果表明较低的铸膜液温度和凝胶浴温度、较短的蒸发时间和较低聚合物浓度有利于增加膜的有效孔隙率。在铸膜液中加入非溶剂是提高膜性能的一种手段,但非溶剂的加入量需足够大,以抵消铸膜液温度提高引起的相反的效应。  相似文献   

11.
In the current research, nanocomposite polyethersulfone-based nanofiltration membranes were prepared by composite PAA-co-PMMA-g-ZnA nanoparticles. NF membranes were fabricated by phase inversion through casting solution technique. The effect of composite PAA-co-PMMA-g-ZnA nanoparticles concentration into the casting solution on physicochemical characteristics of membrane was studied. Scanning optical microscopy images showed uniform particle distribution for the membranes. Scanning electron microscopy images also demonstrated that membrane porosity was enhanced by increase in nanoparticles content ratio. The membrane surface 3D images showed smooth surface for the membranes filled with 0.05, 0.1 and 0.5 wt% nanoparticles. The contact angle results exhibited that membrane hydrophilicity was improved significantly by using of NPs in membrane matrix. The contact angle was decreased from 65.38° for PES membrane to 48.33° for membrane filled with 0.5 wt% nanoparticles. The water permeability was reduced initially by addition of 0.05 wt% nanoparticles into the casting solution and then increased by more nanoparticles loading rate (0.1 wt%). The water permeability was decreased again by more increase in nanoparticles loading range from 0.5 to 1 wt%. The salt rejection was improved strongly from 68.4 % for PES to 88.58 % for membrane filled with 0.5 wt% nanoparticles. The membranes mechanical strength was increased sharply from 2835.5 to 3337.3 kPa with addition of nanoparticles into the casting solution.  相似文献   

12.
In the current report, casting from good solvent (acetone) and casting from mixed solvent and nonsolvent were employed for preparing thin films of terpolymer of T etrafluoroethylene (TFE), H exafluoropropylene (HFP), and V inylidene fluoride (VDF) (THV), on silicon wafers. These films revealed various morphologies and wetting behaviors depending on the solution concentration, temperature, and thin film preparation method. The THV thin films prepared by casting from good solvent showed smooth morphology with holes. The thin film prepared from a 3 wt % THV/acetone solution by casting from good solvent at 15 °C demonstrated spheres in addition to the smooth morphology, while the thin film prepared from a 5 wt % THV/acetone solution at 15 °C by casting from good solvent had a mesh‐like structure with some linked spheres. Casting the thin films from mixed solvent and nonsolvent resulted in various morphologies such as different sphere sizes embedded in a dense film layer, and hexagonal close packed structures. The thin films prepared by casting from good solvent showed a slightly hydrophobic character, with a measured water contact angle of approximately 99°, while the nonsolvent cast films had a water contact angle as high as 145°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 643–657  相似文献   

13.
New ultrafiltration membranes based on chemically and thermally stable arylene main-chain polymers have been prepared by blending the sulfonated poly(ether ether ketone) with cellulose acetate in various compositions in N,N-dimethylformamide as solvent by phase inversion technique. Prepared membranes have been subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane hydraulic resistance. The pore statistics and molecular weight cut-off (MWCO) of the membranes have been estimated using proteins such as trypsin, pepsin, egg albumin and bovine serum albumin. The pore size increased with increasing concentrations of sulfonated poly(ether ether ketone) in the casting solution. Similarly, the MWCOs of the membranes ranged from 20 to 69 kDa, depending on the various polymer compositions. Surface and cross-sectional morphologies of membranes were analyzed using scanning electron microscopy. The effects of polymer compositions on the above parameters were analyzed and the results are compared and discussed with those of pure cellulose acetate membranes.  相似文献   

14.
The influence of the forming conditions on the structure and properties of Aquivion® perfluorinated proton-conducting membranes prepared by casting from a dimethylformamide solution was studied. At properly chosen and controlled conditions of solvent evaporation and subsequent heat treatment, membranes with more ordered morphology and structure, high level of mechanical properties, and high proton conductivity can be obtained. These results are attributed to the structural self-organization of the polymer base of the membranes in the course of nanofilm formation. The properties of Aquivion® type membranes prepared by casting and pressing were compared. The possibility of improving the strength properties of the membranes to the level close to that of the membranes prepared by extrusion was demonstrated.  相似文献   

15.
In this paper, a novel positively charged asymmetrical membrane was manufactured from brominated polyphenylene oxide (BPPO)/N-methyl-2-pyrrolidone (NMP)/H2O via in situ amination with triethanolamine (TEOA) and a dry–wet phase inversion. The casting solution was exposed to the humid surroundings before immersing into the coagulation bath. The positive charge character of the membrane surface was examined by streaming potential and the effect of the evaporation time and the relative humidity (RH) on the membrane properties and microstructure were investigated, respectively. It was interestingly found that the role of evaporation time and the relative humidity on the membrane performance and morphologies for a positively charged casting system was different from the conventional rule. This was mainly due to the competition of two influence factors, i.e., evaporation of solvent and water absorption of the casting solution. The results were conformed to SEM observation and pore size distribution. Furthermore, the process of water absorption of the casting solution was monitored by attenuated total reflectance infrared (ATR-FTIR) spectroscopy technique. Additionally, in order to compare to the dry–wet phase inversion method, the membranes were obtained by prolonging the exposure time to more than 12 h (which was similar to vapor-induced phase inversion) at different RH. Polymer nodules on the membrane surface and a symmetrical morphology were observed by SEM.  相似文献   

16.
In this study, the chemical reaction between acetic acid (CH3COOH) used as non-solvent additive of casting solution and sodium carbonate (Na2CO3) dissolved in water as coagulant was employed to modify the classical phase inversion process. By means of this method, the polyethersulphone (PES) ultrafiltration (UF) membranes were prepared. The influence of acetic acid on the properties of the polymer solution was examined by viscometry and related to the morphology of the membrane prepared from the casting solution. The membranes were characterized in terms of the pure water flux, solute transport and field emission scanning electron microscope (FESEM) observation. It was found that chemical reaction between the additive and coagulant increases membrane permeability and mean pore size while maintaining the relatively narrow pore size distribution. FESEM images also confirmed that the chemical reaction contributes to suppress the formation of macrovoid and enhance the interconnectivity of pore. Furthermore, the potential mechanism of membrane formation influenced by chemical reaction was explored tentatively.  相似文献   

17.
The structures of Nafion membranes prepared by solutions casting from low aliphatic alcohols/water mixture solvents and N,N′‐dimethyl formamide (DMF) solvent were investigated using differential scanning calorimeter and small angle X‐ray scattering. The aggregation behavior of Nafion molecules in the casting solutions was also investigated using dynamic light scattering. We show that the morphology of membranes was strongly influenced by the conformations of Nafion molecules in the solutions. In aliphatic alcohol/water mixture solvents, which have a worse compatibility with Nafion backbones, the Nafion molecules aggregate and form fringed rod‐like structures. These primary rod‐like structures then aggregate again through fringed side chains to form secondary ionic aggregations. In DMF solvent, owing to its better compatibility with Nafion backbones, less Nafion molecules aggregate. The high degree of Nafion molecular aggregations in aliphatic alcohol/water mixture solvents leads to a high degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/aliphatic alcohol/water solutions. However, the lower degree of molecular aggregations in DMF solvent results in a lower degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/DMF solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3044–3057, 2005  相似文献   

18.
Highly ordered porous membranes of cellulose triacetate (CTA) were prepared successfully on ice substrates using breath figure method. The pore size and structure of the membrane were modulated by changing CTA concentrations and substrate materials. As the CTA concentration in the casting solution increased, the pore size in the formed membrane decreased. The regularity of the membrane cast on the ice substrate was much better than that of the membrane cast on glass substrate, because the low temperature of ice substrate slowed down the evaporation rate of organic solvent, which offered enough time for condensed water droplets to self‐organize into an ordered array dispersed in the polymer solution before their coagulation. The ordered porous CTA membrane was not only used for microfiltration, but also used for fabrication of functional microstructures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 552–558  相似文献   

19.
Blend membranes comprising cellulose acetate and polysulfone (CA/PSf) were prepared through a solution casting method using a different concentration of polyvinylpyrrolidone (PVP) as the pore former. Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate structural properties of membranes. Membranes morphology and its thermal properties were characterized by scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The strength of membranes was studied by mechanical stability. The effect of PVP concentration on separation performance of the prepared membranes was studied. The separation performance of prepared membranes was tested by using an aqueous solution of cadmium metal complexed with humic acid. The results showed that an increase in the PVP concentration in the cast film from 0 to 3 wt% increased the thermal stability, water content (%), pure water flux, and solute rejection. SEM results showed that the pore size decreased but the number of pores increased on an increase in the PVP concentration.  相似文献   

20.
Highly porous interpolymer ion-exchange membranes have been prepared from poly(styrene sulfonic acid), PSSA and poly(vinylidene fluoride) PVdF using a casting solvent of dimethylformamide and hexamethylphosphoramide. The membranes have been characterized by their water content, concentration potential, ionic conductivity, and their hydraulic permeability. An estimation of the porosity of the membranes has been made from the relative conductance of the potassium and the tetrabutylammonium ions in the film. This porosity has been compared with that derived from a consideration of the water flux through a Poiseuille-type pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号