首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

2.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

3.
Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L?1 for Pb(II) and <5 ng L?1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables.
Figure
In this work, grapheme oxide nanosheets were modified with amino and tri-amino groups and their application were investigated in Cd(II) and Pb(II) determination in food sample. The results show high preconcentration factor and adsorption capacities for these nanosheets.  相似文献   

4.
Multiwalled carbon nanotubes were impregnated with 4-(2-thiazolylazo)resorcinol and used for the separation and preconcentration of Cd(II), Pb(II), Zn(II) and Ni(II) ions from food samples. The analytes were quantitatively recovered at pH 7.0 and eluted with 3?mol?L?1 acetic acid. The effects of pH value, flow rate, eluent type and sample volume on the recoveries, and the effects of alkali, earth alkali and transition metals on the retention of the analytes were studied. The method was validated using the standard certified reference materials SRM 1570A (spinach leaves) and IAEA 336 (lichen), and the results were found to be compatible with the certified values of reference materials. The new enrichment procedure was applied to the determination of these ions in various food samples.
Figure
Multiwalled carbon nanotubes were impregnated with 4-(2-thiazolylazo)resorcinol and used for the separation and preconcentration of Cd(II), Pb(II), Zn(II) and Ni(II) ions from food samples. The analytes were quantitatively recovered at pH 7.0 and eluted with 3 mol L-1 acetic acid. The method was validated using the standard certified reference materials SRM 1570A (spinach leaves) and IAEA 336 (lichen), and the results were found to be compatible with the certified values of reference materials. The new enrichment procedure was applied to the determination of these ions in various food samples.  相似文献   

5.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

6.
We have prepared a highly selective and efficient sorbent for the simultaneous separation and preconcentration of lead and cadmium ions from milk and water samples. An ionic liquid was deposited on the surface of magnetic nanoparticles (IL-MNPs) and used for solid phase extraction of these ions. The IL-MNPs carrying the target metals were then separated from the sample solution by applying an external magnetic field. Lead and cadmium were almost quantitatively retained by the IL-MNPs, and then eluted with nitric acid. The effect of different variables on solid phase extraction was investigated. The calibration curve is linear in the range from 0.3 to 20?ng mL?1 of Cd(II), and from 5 to 330?ng mL?1 of Pb(II) in the initial solution. Under optimum conditions, the detection limits are 1.61 and 0.122?μg?L-1 for Pb(II) and Cd(II) respectively. Relative standard deviations (n?=?10) were 2.87?% and 1.45?% for 0.05?μg?mL-1 and 0.2?μg?mL-1 of Cd (II) and Pb (II) respectively. The preconcentration factor is 200 for both of ions.
Figure
A novel, highly selective and efficient sorbent, was prepared and applied for separation and preconcentration of lead and cadmium from real samples. Lead and cadmium could be quantitatively retained by ionic liquid-modified magnetite nanoparticles and then easily separated from the aqueous solution by applying an external magnetic field; so, no filtration or centrifugation was necessary.  相似文献   

7.
We have developed a convenient, selective and reliable method for the rapid enrichment of trace quantities of Cu(II) by using a magnetic Cu(II) ion-imprinted polymer. This is followed by their determination by FAAS. The imprints were prepared by using (a) Cu(II) ions as the template, (b) 3-aminopropyltriethoxysilane as both the functional monomer and the crosslinking agent, and (c) Fe3O4 as the magnetic component. Enrichment is carried out in a single step, and adsorbed copper ions can be separated from the sample solution by applying a strong magnet. The effects of pH, elution condition, amount of imprint, and of potentially interfering ions were evaluated. Under the optimal conditions, the detection limit and enrichment factor are 0.3?μg L?1 and 100, respectively, and the recovery is >95?%. The procedure was successfully applied in the enrichment and detection of trace copper ions in environmental water.
Figure
General procedure for preconcentration/recovery of Cu (II) ions  相似文献   

8.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

9.
A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350???g?L-1 of Pb(II), and between 2.4 and 520???g?L-1 of Cr(III) for an 800-mL sample. The detection limit (3?s, N?=?10) for Pb(II) and Cr(III) ions is 0.43 and 0.55???g?L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples.
Figure
Recovery percentage of Pb(II) and Cr(III) ions at different solution volumes.  相似文献   

10.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   

11.
We show that a metal-organic framework (MOF) sustained by a nanosized Ag12 cuboctahedral node can be applied to selectively extract traces of lead(II) ion from environmental water samples. The MOF was characterized by thermogravimetric and differential thermal analysis, scanning electron microscopy, FTIR, and X-ray diffraction. The effects of pH value, flow rates, of type, concentration and volume of the eluent, of break-through volume and potentially interfering ions on the separation and determination of lead were evaluated. Following desorption with EDTA, Pb(II) was quantified by FAAS. The use of the MOF results in excellent analytical figures of merit including an analytical range from 2 to 180 μg L?1 of Pb(II) (R2?>?0.99); a limit of detection of 500 ng L?1; an adsorption capacity of 120 mg g?1; an extraction efficiency of >95 %, and a relative standard deviation of <4 % (for eight separate column experiments).
Figure
In the present study, for the first time, metal-organic framework sustained by nanosized Ag12 cuboctahedral node was used for selective solid-phase extraction and ultra-trace determination of lead in water samples without any modifications on the mentioned MOF  相似文献   

12.
We report on the synthesis of Fe3O4-functionalized metal-organic framework (m-MOF) composite from Zn(II) and 2-aminoterephthalic acid by a hydrothermal reaction. The magnetic composite is iso-reticular and was characterized by FTIR, X-ray diffraction, SEM, magnetization, and TGA. The m-MOF was then applied as a sorbent for the solid-phase extraction of trace levels of copper ions with subsequent quantification by electrothermal AAS. The amount of sorbent applied, the pH of the sample solution, extraction time, eluent concentration and volume, and desorption time were optimized. Under the optimum conditions, the enrichment factor is 50, and the sorption capacity of the material is 2.4 mg g?1. The calibration plot is linear over the 0.1 to 10 μg L?1 Cu(II) concentration range, the relative standard deviation is 0.4 % at a level of 0.1 μg L?1 (for n?=?10), and the detection limit is as low as 73 ng L?1. We consider this magnetic MOF composite to be a promising and highly efficient material for the preconcentration of metal ions.
Figure
Magnetic metal-organic frameworks was synthesized and used as a new sorbent for lead adsorption with detection by electrothermal atomic absorption spectrometry.  相似文献   

13.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

14.
We report on the application of emulsification-based dispersive liquid microextraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L?1, the limit of detection (at S/N?=?3) is 30 pg L?1, the relative standard deviations for seven replicate analyses (at 0.56 μg L?1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination.
Figure
Emulsification based dispersive liquid microextraction is presented for determination of cadmium in water samples  相似文献   

15.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

16.
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). In the first step, the cationic Pb(II) complex of 2,2-bipyridyl is formed which, in a second step, is adsorbed on ox-MWCNTs mainly due to electrostatic and van der Waals interactions. The Pb(II) ions were then eluted with dilute nitric acid and quantified by FAAS. The effects of pH value, mass of sorbent, concentration of 2,2-bipyridyl, stirring time, of type, concentration and volume of eluent, of eluent flow rate and sample volume were examined. Most other ions do not affect the recovery of Pb(II). The limits of detection are 240 and 60 ng L?1 for sample volumes of 100 and 400 mL, respectively. The recovery and relative standard deviation are >95 % and 2.4 %, respectively. Other figures of merit include a preconcentration factor of 160 and a maximum adsorption capacity of 165 mg g?1. The method was successfully applied to the determination of Pb(II) in spiked tap water samples. The accuracy of the method was verified by correctly analyzing a certified reference material (NCS ZC85006; lead in tomatoes).
Figure
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). Most other ions do not affect the recovery of Pb(II).  相似文献   

17.
We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 μg L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water.
Figure
In the present work, polythiophene-coated Fe3O4 nanoparticles have been successfully synthesized and were applied as adsorbent for magnetic solid-phase extraction of some precious metal ions.  相似文献   

18.
The author describes the preparation of a magnetic metal organic framework of type MOF-199 containing magnetite (Fe3O4) nanoparticles carrying covalently immobilized 4-(thiazolylazo) resorcinol (Fe3O4@TAR). This material is shown to represent a viable sorbent for separation and preconcentration of Cd(II), Pb(II), and Ni(II) ions. Box-Behnken design was applied to optimize the parameters affecting preconcentration. Following elution with 0.6 mol L?1 EDTA, the ions were quantified by FAAS. The capacity of the sorbent ranged between 185 and 210 mg g?1. The limits of detection are 0.15, 0.40, and 0.8 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <8.5 %. The method was successfully applied to the rapid extraction of trace amounts of these ions from sea food and agri food.
Graphical abstract (a) A schematic diagram of Fe3O4 functionalization by TAR (4-(thiazolylazo) resorcinol). (b) The schematic illustration of the magnetic metal organic framework-TAR nanocomposite. H3BTC: benzene-1,3,5-tricarboxylic acid; TEA: triethylamine; 3-CPS: 3-chloropropyl triethoxysilane.
  相似文献   

19.
We have developed a solid phase extraction method for the determination of cadmium ions in aqueous samples. It is based on the adsorption of Cd(II) on alumina nanoparticles coated with sodium dodecyl sulfate and modified with a newly synthesized Schiff base. Analytical parameters such as pH value, amount of adsorbent, type and concentration of eluent, flow rates of the sample and eluent, sample volume and matrix effects were optimized. Desorption is accomplished with 2?mol?L?1 nitric acid. Cd(II) was then determined by flame atomic absorption spectrometry. The maximum enrichment factor is 75. Under the optimum experimental conditions, the detection limit is 0.14???g?L?1 in original solution. The adsorption capacity of the modified sorbent is 4.90?mg?g?1 for cadmium ions. The method was applied to the determination of trace quantities of Cd(II) in water, wastewater, and biological and food samples with satisfactory results.
Figure
Schematic representation of the loading L on the alumina nanoparticles  相似文献   

20.
We have immobilized iminodiacetic acid on mesoporous Fe3O4@SiO2 microspheres and used this material for efficient and cost effective method of magnetic solid phase extraction (SPE) of trace levels of Cd, Mn and Pb. The microspheres were characterized by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The loaded microspheres can be easily separated from the aqueous sample solution by applying an external magnetic field. The effects of pH, sample volume, concentration and volume of eluent, and of interfering ions were investigated in detail. The method has detection limit of 0.16, 0.26 and 0.26?ng?L?1 for the ions of Cd, Mn and Pb, respectively, and the relative standard deviations (RSDs, c?=?1???g?L?1, n?=?7) are 4.8%, 4.6% and 7.4%. The method was successfully applied to the determination of these metals in biological and environmental samples using ICP-MS. Two certified reference materials were analyzed, and the results coincided well with the certified values.
Figure
Mesoporous Fe3O4@SiO2@IDA magnetic particles for fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb from environmental and biological samples followed by inductively coupled plasma mass spectrometry detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号