首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Interfacial properties of cationic surfactants show strong dependence on the type of surfactant counterion or on the type of anion of a salt added to the surfactant solution. In the paper, the models of ionic surfactant adsorption that can take into account ionic specific effects are reviewed. Model of ionic surfactant adsorption based on the assumption that the surfactant ions and counterions undergo nonequivalent adsorption within the Stern layer was selected to describe experimental surface tension isotherms of aqueous solutions of a number of cationic surfactants. The experimental isotherms for: n-alkyl trimethylammonium cationic surfactants, namely: C(16)TABr (CTABr or CTAB), C(16)TACl, C(16)TAHSO(4), C(10)TABr and C(12)TABr as well as decyl- and dodecylpyridinium salts with and without various electrolyte anions as Cl(-), Br(-), F(-), I(-), NO(3)(-), ClO(4)(-) and CH(3)COO(-) were described in terms of the model and a good agreement between the theory and experiment was obtained for a wide range of surfactants and added electrolyte concentrations. A very pronounced Hofmeister effect in dependence of surface tension of cationic surfactants on the type of anion was found. Analysing this dependence in terms of the proposed model of ionic surfactant adsorption, strong correlation between "anion surface activity" (the model parameter accounting for ion penetration into the Stern layer), and the ion polarizability was obtained. That suggests that the mechanism related to the dispersive interaction of polarized ion with electric field at interface is responsible for Hofmeister series effects in surface activity of cationic surfactants. The same mechanism was proposed recently to explain the dependence of surface tension increase with electrolyte concentration on anion and cation type.  相似文献   

2.
Studying the disjoining pressure Pi as a function of the film thickness h (Pi-h curves) of foam films stabilized by ionic and nonionic surfactants, one finds that the surface charge density q0 of films stabilized by ionic surfactants increases with increasing surfactant concentration, while the opposite holds true for nonionic surfactants. Thus, it should be possible to tune the surface charge density with mixtures of nonionic and ionic surfactants. To address this question, we studied foam films stabilized by aqueous solutions of surfactant mixtures. The mixtures consisted of the nonionic beta-dodecylmaltoside (beta-C12G2) and the cationic dodecyl trimethylammonium bromide (C12TAB) with mixing ratios of beta-C12G2/C12TAB = 1:0, 50:1, 1:1, 1:50, 0:1. The addition of small amounts of C12TAB to beta-C12G2 first neutralizes the negative surface charge of the beta-C12G2 films and finally leads to a charge reversal from negatively to positively charged surfaces. On the other hand, by adding small amounts of beta-C12G2 to C12TAB, one observes the formation of stable CBFs which was also observed for the pure C12TAB. However, in contrast to the pure C12TAB, the resulting Pi-h curves for the mixtures cannot be described with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; the slope of the curves is too steep, and it barely changes with changing electrolyte concentration. A possible explanation for this observation will be given and discussed.  相似文献   

3.
The adsorption of non-ionic, anionic and cationic surfactants on a stationary mercury electrode from aqueous solutions of a supporting electrolyte is discussed with respect to phase transformations in the adsorption monolayer, the determination of adsorption parameters and outer Helmholtz potentials. Investigations of the stability of thin liquid films, formed from solutions of these surfactants between a mercury electrode and a hydrogen bubble reveal certain peculiarities. The latter are explained by the assumption of the existence, in some cases, of a hydrophobic component of the of the disjoining pressure in the films, with the estimation of the corresponding hydrophobic force constant.  相似文献   

4.
The disjoining pressure Pi of films of aqueous octyl-beta-glucoside (beta-C(8)G(1)) solutions with and without salt was measured as a function of the film thickness by means of a thin film pressure balance. The analysis of the experiments confirms the presence of an electrostatic double layer which dominates the long-range interactions as found in previous experiments with other non-ionic surfactants in the presence of added salt. In the absence of salt, we find a local ion concentration much higher than that of the residual ionic impurities present in the bulk solution.  相似文献   

5.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

6.
Two synthetic pathways have been elaborated to prepare new series of highly fluorinated sulfamates with excellent yields. Surface tension measurements at the air/water interface showed that these compounds constitute new excellent non-ionic surfactants exhibiting high surface activity in the range of the best non-ionic fluoro surfactants already described in the literature. The most important feature of this work is that, in comparison with the classical non-ionic fluoro surfactants, these sulfamates are easily synthesized in a monodisperse form from classical and relatively non-toxic starting materials. The critical micelle concentration (CMC), the maximum surface excess concentration (Γ) and the minimum area per molecule (a) have been calculated from the surface tension measurements on surfactant aqueous solutions. Relationships have been established between the length of both the fluorinated tail and hydrocarbon spacer linking the hydrophobic tail to the hydrophilic head, and the interfacial properties.  相似文献   

7.
Adsorption isotherms have been determined at the water/oil interface for five biphasic systems involving surfactants (non-ionic and ionic) present in both phases at partition equilibrium. The systems studied were polyoxyethylene(23)lauryl ether (Brij35) in water/hexane and four ionic surfactants, hexadecyltrimethylammonium bromide (CTAB), and a series of three tetraalkylammonium dodecylsulfate (TEADS, TPADS, and TBADS) in water/CH 2Cl 2. Interfacial tension measurements performed at the water/air and water/oil interfaces provided all the necessary information for the determination of the adsorption parameters by taking partition into account. These measurements also allowed the comparison of the adsorption properties at both interfaces which showed an increase of the adsorption equilibrium constant and a decrease of the maximum surface concentration at the water/oil interface compared to water/air. The values of the critical aggregation concentration showed, in all cases, that only the surfactant dissolved in the aqueous phase contribute to the decrease of the water/oil interfacial tension. In the case of the four ionic surfactants, the critical aggregation concentration obtained in biphasic conditions were lowered because of the formation of mixed surfactant-CH 2Cl 2 aggregates.  相似文献   

8.
Correlation of the behavior of foam from aqueous solutions of C(10)E(8) + TPeAB mixtures with the properties of the single foam films is sought through a theoretical analysis based on experimental data. The state in the adsorption layer on the air/solution interface has been determined from the surface tension experimental data by applying the Frumkin adsorption isotherm for mixed surfactants. Diverse parameters of the adsorption layer have been calculated. Values of the surface potential, estimated from the electrostatic disjoining pressure in the films, are found to be in good agreement with those calculated through the Grahame equation for the air/water interface. The energy of interaction (attraction) in the mixed adsorption layers is determined. The behavior of a foam body produced from solutions of the same composition, is also investigated in two independent ways using the stationary foam column and the foam life-time (decay rate) methods. Both techniques gave similar results with respect to foam stability.  相似文献   

9.
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.  相似文献   

10.
A simple and convenient method to measure microelectrophoretic mobilities was proposed to determine the zeta potential of nanobubbles generated by ultrasonication. Bubbles in pure water solutions and in aqueous solutions of alkyl polyglycoside (AG) with different alkyl chain lengths and degrees of polymerization in the head group were sonicated with a palladium-coated electrode designed specially by the manufacturer. The zeta potentials of bubbles with ordinary cationic and ionic surfactants are consistent with others' previous results. The average size of the bubbles generated by sonication is in the range of 300 to 500 nm. The zeta potentials of bubbles in both pure water and AG solutions at all pH values are negative. As the chain length of AG increases, zeta potentials significantly decrease at high pH. For nonionic AG, a possible charging mechanism based on known mechanisms is suggested to explain the negative charge, known to be unusual. Even with a very high concentration of H(+) ions in solution the bubbles are charged negatively because the interface is covered with slightly acidic alcohol groups of AGs. At high pH, the less polar the surfactant, the more negative the charge, since nonpolar surfactant molecules induce the adsorption of OH(-) ions, rather than H(+) ions that prefer hydration by water molecules. Copyright 2000 Academic Press.  相似文献   

11.
Aqueous thin film studies and surface tension measurements on a mixed surfactant system consisting of poly(ethylene oxide) (PEO), which was chosen as a model flotation frother, and potassium ethyl xanthate, which was chosen as a model flotation collector, enable the interaction between the two surfactants at the air/solution interface to be elucidated.

For the film containing the non-ionic frother, the interface was charged and addition of low concentrations of xanthate acted as a common electrolyte and reduced the thickness of the film, inducing rupture. However, at high xanthate collector concentrations, the negatively charged xanthate was found to interact with the non-ionic PEO causing an accumulation of negative charge at the air/solution interface. Higher frother concentrations were necessary to produce non-rupturing thin films upon increasing the xanthate concentration.  相似文献   


12.
We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.  相似文献   

13.
The surface tensions and the phase equilibria of dilute aqueous cationic starch (CS)/surfactant systems were investigated. The degree of substitution of the CS varied from 0.014 to 0.772. The surfactants investigated were sodium dodecyl sulphate (SDS), potassium octanoate (KOct), potassium dodecanoate (KDod) and sodium oleate (NaOl). The concentrations of CS were 0.001, 0.01 and 0.1 w%.Critical association concentrations (cac) occur at surfactant concentrations well below the critical micelle concentrations of the surfactants, except for KOct, KDod and NaOl at the lowest CS concentrations investigated (0.001 w%). The surface tensions of CS/surfactant solutions decrease strongly already below the cac. This is attributed to the formation of surface active associates by ion condensation. Associative phase separation of gels formed by CS and surfactant takes place at extremely low concentrations when the surfactant/polymer charge ratio is somewhat larger than 1. The gel is higly viscous and contains 40–60% water, depending on the concentration of electrolyte, the surfactant hydrocarbon chain length and the nature of the polar head of the surfactant.The concentration at which the phase separation occurs decreases with increasing surfactant chain length and the concentration of simple electrolyte, factors that promote micelle formation. This indicates that the gels are formed by association of CS to surfactant micelles. When surfactant well in excess of charge equivalence is added, the gels dissolve because the CS/surfactant complexes acquire a high charge.  相似文献   

14.
This paper begins with a review of the studies dedicated to the electrochemistry of non-polar liquids performed during last century. There is a list of dozens of liquids that have been studied, as well as variety of electrolytes. There is an overview of 13 different experimental methods which have been employed for this task. The theoretical part of the review emphasizes the work done by Onsager, Debye, Fuoss, Kraus, Bjerrum and others in 1920s and 30s. They initiated and justified the fundamental ideas that serve as the scientific basis for modern handbooks on non-aqueous electrochemistry. Many of these papers from 1930s and later are reviewed here.The second part of this paper is dedicated to the electrochemistry of non-polar liquids containing surfactants. These substances can serve as electrolytes if ionic. However, their main function is to enhance the solvation of ions, providing steric stabilization that minimizes ion re-association and ion-pair formation. Consequently, the classical “dissociation model” requires some modification when applied to surfactant solutions. There are also two additional theoretical models suggested specifically for surfactant solutions in non-polar liquids: the “disproportionation model” for dry inverse micelles, and the “fluctuation model” by Eicke, Borkovec, and Das-Gupta for microemulsions. Charged microemulsion droplets can serve as ions, which justifies the inclusion of this theory in this review. In addition, we can study (with a well defined theory) the transition from microemulsion droplet to dry inverse micelle ion by reducing water content. Studying this transition reveals some important features of both systems.We present here these three theories and apply them for interpreting experimental data (mostly conductivity) in four different systems, all of which are non-polar systems containing surfactants: solutions of ionic surfactants, solutions of non-ionic surfactants, microemulsions with ionic surfactants, and microemulsions with non-ionic surfactants.  相似文献   

15.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

16.
The composition and properties of the adsorption films of dodecylammonium chloride/sodium dodecyl sulfate at the air/water interface depend on interactions between the film molecules and equilibria in the bulk phase (monomer-micelle and/or monomerprecipitate equilibria).The negative value of surface molecular interaction parameter mon calculated using the regular solution theory indicates strong attractive interactions between adsorbed molecules. Electrostatic interactions between oppositely charged ionic head groups enhance the adsorption of surfactants and decrease the minimum molar area of surfactant molecules at the air/water interface. The addition of an oppositely charged surfactant enhances packing at the air/water interface and transition from a liquid expanded to a liquid condensed state. Surface potential measurements reveal positive values for the mixtures investigated, implying the cationic surfactant ions are closer to the surface than the anionic ones.  相似文献   

17.
Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.  相似文献   

18.
The interfacial tensions and dilational properties of adsorbed films of two non-ionic surfactants with different hydrophobic groups, polyoxy-ethylene sorbitan stearate (Tween 60) and polyoxy-ethylene sorbitan monooleate (Tween 80), at the water–decane interface have been investigated by the drop-shape analysis method. The effects of dilational frequency and bulk concentration on the interfacial properties were expounded. The influence of low temperature on the interfacial tensions and dilational properties have also been researched. The experiment results show that the interfacial activity of Tween 80 is rather large compared with Tween 60. The minimum area per molecule at the water–decane interface (Amin) value of Tween 80 is little large than that of Tween 60, which is due to the steric effect of unsaturated double bond in Tween 80 molecule. The dilational data show that the ethylene oxide groups of non-ionic surfactant form a stable sub-layer, which results in the increase of modulus and the decrease of phase angle for both Tween 60 and Tween 80 than those of common ionic surfactants. Moreover, the unsaturated hydrophobic group of Tween 80 is much flexible, which is easily crosslinked and entangled. Therefore, dilational modulus of Tween 80 is higher and phase angle is lower than that of Tween 60. Low temperature decreases the flexibility of unsaturated hydrophobic group and lessens the influence on the interaction of saturated hydrophobic group. Saturated surfactant molecules of Tween 60 almost lose temperature response.  相似文献   

19.
Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic–lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions.  相似文献   

20.
The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号