首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Palladium‐catalyzed base‐selective annulation of dibromonaphthalimide to different aryl boronate esters by combined Suzuki–Miyaura cross‐coupling and direct C−H arylation afforded a series of new five‐ and six‐membered ring annulated electron‐poor polycyclic aromatic hydrocarbons. Cesium carbonate (Cs2CO3) as auxiliary base in these C−C coupling cascade reactions led exclusively to six‐membered ring annulation, while the use of organic base diazabicycloundecene (DBU) afforded the corresponding five‐membered ring annulated products. This base‐dependent selective mode of annulation is attributed to different mechanistic pathways directed by the applied base. The selective annulation was revealed by single crystal X‐ray analysis of the respective five‐ and six‐membered ring annulated products. The optical and redox properties of the new polycyclic aromatic dicarboximides were characterized by UV/Vis absorption and fluorescence spectroscopy and cyclic voltammetry.  相似文献   

2.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C?H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C?H bonds of these rings under conditions that the borylation of C?H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.  相似文献   

3.
The new six‐membered‐ring (2R)‐10a‐homobornane‐10a,2‐sultam (−)‐ 3a was synthesized and its X‐ray structural analysis was compared with that of the novel structure of the five‐membered‐ring (2R)‐bornane‐10,2‐sultam analogues (−)‐ 1a , b as well as with that already published for the six‐membered‐ring trans‐decalin‐like sultam 4a . Based on DN** density‐function calculations and X‐ray crystallographic studies of the N‐methylated analogues (−)‐ 1e and 4b and by comparing with the conformation of the N‐fluoro derivatives (−)‐ 1c and (+)‐ 1d , the anomeric stabilization was estimated to be smaller than the 2.0–2.5 kcal/mol earlier suggested. The direction of pyramidalization is rationalized in terms of H‐bond and steric and electronic interactions and extended to the known toluenesultam derivatives 10a – c .  相似文献   

4.
Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia‐ene‐type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom‐economical as stoichiometric oxidants or reductants are not required. Assisted by Kool’s aniline catalyst, the reaction conditions can be both pH‐ and redox‐neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five‐membered rings, a ruthenium‐based system that affords the six‐membered ring products was also developed.  相似文献   

5.
The chemoselective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six‐membered cyclic carbonates remains a challenging topic. Here, an effective method for their synthesis relying on the use of Al catalysis is described. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2‐ and 3‐position(s) of the oxetane ring. The presented methodology is the first general approach towards the formation of six‐membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six‐membered cyclic carbonates, also the unprecedented room‐temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five‐ and six‐membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers.  相似文献   

6.
This article deals with the polyaddition of a novel bis(seven‐membered cyclic carbonate), 1,2‐bis[3‐(1,3‐dioxepan‐2‐one‐5‐yl)‐propylthio]ethane, with the diamines 4,9‐dioxa‐1,12‐dodecanediamine and p‐xylylenediamine. The polyaddition was carried out at 30–70 °C for 6–24 h in dimethyl sulfoxide to obtain the corresponding polyhydroxyurethanes with number‐average molecular weights of 10,900–35,700 in good yields. The reaction of a monofunctional seven‐membered cyclic carbonate, 5‐allyl‐1,3‐dioxepan‐2‐one (7CC), with monoamines was also carried out to examine the reactivity in comparison with that of six‐ and five‐membered cyclic carbonates. The reaction rate constants of 7CC with n‐hexylamine and benzylamine were estimated to be 48.5 and 11.0 L/mol · h, respectively, in dimethyl sulfoxide‐d6 (initial reagent concentration = 1 M) at 30 °C. The seven‐membered cyclic carbonate ring was 2.98 and 5.82 kcal/mol more strained than those of the six‐ and five‐membered cyclic carbonates, respectively, according to a semiempirical molecular orbital calculation with the PM3 Hamiltonian. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4091–4100, 2001  相似文献   

7.
Addition of lithiated 1‐benzyloxyallene to a D ‐arabinose‐derived cyclic nitrone occurred with perfect diastereoselectivity furnishing a bicyclic 1,2‐oxazine derivative, which is an excellent precursor for pyrrolizidine alkaloids hydroxylated at C‐7 with optional configuration at this stereogenic center. Depending on the stage of the N? O bond cleavage and ring re‐closure, 7‐hydroxypyrrolizidines with 7R or 7S configuration were obtained, as a result of completely selective addition reactions occurring complementarily at the bottom or top face of the endocyclic C? C double bond in six‐ and five‐membered B rings, respectively. Applicability of these stereodivergent routes to obtain polyhydroxy pyrrolizidine alkaloids is demonstrated by the efficient syntheses of casuarine and australine as examples of the two classes of diversely configured 7‐hydroxypyrrolizidine alkaloids. An alternative synthesis of australine and two strategies for the preparation of 7‐epi‐australine are also reported, which demonstrate that the stereoselectivity of hydride reduction of an exocyclic C? O double bond is independent of the ring size, occurring preferentially from the top face either in a six‐ or five‐membered ring.  相似文献   

8.
Isomerization reactions of peroxy radicals during oxidation of long‐chain hydrocarbons yield hydroperoxides, and therefore play an important role in combustion and atmospheric chemistry, because of their action as branching agents in these chain reaction processes. Different formation mechanisms and structures are involved. Three isomeric hexyl‐ketohydroperoxides are formed via isomerization reactions in oxygen of either hexoxy RO or hexylperoxy RO2 radicals. In the temperature range 373–473 K, 2‐hexoxy (C6H13O) radical in O2/N2 mixtures gives 2‐hexanone‐5‐hydroperoxide via two consecutive isomerizations. The second one is a H transfer from a HC(OH) group occurring via a seven‐membered ring intermediate: Its rate constant has been determined at 453 and 483 K, and the general expression can be written as Hexylperoxy C6H13O2 radical, present in n‐hexane oxidation by oxygen/nitrogen mixtures in the temperature range 543–573 K, gives 2‐hexanone‐4‐hydroperoxide, 3‐hexanone‐5‐hydroperoxide, and 2‐hexanone‐5‐hydroperoxide. The first two are formed through an isomerization reaction via a six‐membered ring intermediate, and the last through an isomerization reaction via a seven‐membered ring intermediate. The ratio of the rate constant of the isomerization reactions of RO2 radicals via a seven‐membered ring intermediate to that via a six‐membered ring is found to be 0.795, and the rate constant expression via a seven‐membered ring intermediate is proposed: The role of these reactions in the formation of radicals in the troposphere is discussed. Other products arising in the reactional path, such as ketones, furans, and diketones, are identified. Identification of these ketohydroperoxides was made using gas chromatography/mass spectrometry with electron impact, and with NH3 (or ND3) chemical ionization. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 354–366, 2003  相似文献   

9.
Oxidative photocyclization of 4‐(2‐arylvinyl)benzo[a]quinolizinium salts ( 6 ) gave five‐ or six‐mem‐bered rings depending on the aryl substituent. The olefins 6a and 6b with a phenyl or naphthyl substituent resulted in a normal six‐membered ring formation to afford 6a‐azoniapicene and 6a‐azoniabenzo[b]picene salts ( 7 and 8 ), respectively. In contrast, the photo‐reaction of pyridyl substituted derivative 6c resulted in novel five‐membered ring formation to yield 3b‐azonia‐5‐(2‐pyridyl)acephenanthrylene salt ( 10 ).  相似文献   

10.
The rates of cycloalkyl phenyl sulfide formation of a series of homologous bromocycloalkanes upon treatment with sodium benzenethiolate have been determined to ascertain the effect of ring size on reactivity. The ‘rate profile’, i.e., reaction rate vs. ring size, for these nucleophilic substitutions (SN2) was determined. A linear free‐energy relationship could be derived from computed hydride affinities of cycloalkanes and rates of typical SN1 reactions, whereas rates of SN2 reactions exhibited a strong discrepancy from the seven‐ up to the twelve‐membered rings. This discrepancy was rationalized by a careful examination of the geometry of the intermediates and transition states involved in these reactions.  相似文献   

11.
The fluorescence properties of two new families of heterocycles possessing either a seven‐ or five‐membered ring attached at the core molecule are entirely different in solution and in the solid state. Crystallization has the effect of inhibiting non‐radiative excited‐state deactivation pathways, operative in solution for the seven‐membered ring compounds, thus leading to significant fluorescence efficiency in the solid state, with quantum yields ranging from 0.10 to 0.36. Conversely, the five‐membered ring derivatives, which display notable emission properties in solution, are almost non‐emissive in the crystalline state, characterized by a long‐range π‐stacked arrangement. When embedded in polymeric films, both series show fluorescence features similar to the solution case, with remarkable fluorescence quantum yields ranging from 0.09 to 0.41. According to quantum chemical calculations, 3H‐chromeno[3,4‐c]pyridine‐4,5‐diones show the specific mechanism of fluorescence quenching. The derivatives bearing the seven‐membered ring undergo, in solution, a significant structural deformation in the excited state, resulting in a large decrease of the energy gap between S1 and S0 and hence to a substantial contribution of the internal conversion in the relaxation process. The fluorescence quenching of the five‐membered ring derivatives is in turn related to the intermolecular interaction between adjacent molecules prevailing to a greater extent in the crystal lattice.  相似文献   

12.
The mononuclear title complex, [Co(C6H6NO6)(C2H8N2)]·3H2O, contains an octahedrally coordinated CoIII atom. The N‐(carboxy­methyl)­aspartate moiety is coordinated as a tetradentate ligand, providing an OONO‐donor set and forming two trans five‐membered chelate rings and one six‐membered chelate ring. A seven‐membered chelate ring is also formed, which consists of part of the six‐membered chelate ring and part of one of the five‐membered chelate rings. The crystal structure of the complex is stabilized by hydrogen bonds with three water mol­ecules.  相似文献   

13.
Hemsleyaconitines F and G ( 1 and 2 , resp.) were isolated from the EtOH extract of Aconitum hemsleyanum. Their structures were elucidated by extensive analyses of the IR, 1D‐ and 2D‐NMR, and MS data. The two C19‐diterpenoid alkaloids 1 and 2 possess a novel skeleton, featuring a five‐membered D‐ring between C(9), C(13), C(14), C(15), and C(16), which is quite different from the previously isolated six‐membered D‐ring analogs.  相似文献   

14.
The complex ABC‐tricyclic structure of crotophorbolone, a derivative of the tigliane diterpenoids, was assembled by coupling of simple fragments. The six‐membered C‐ring fragment, having five contiguous stereocenters, was stereoselectively constructed from (R)‐carvone. After attachment of the five‐membered A‐ring through the π‐allyl Stille coupling reaction, the α‐alkoxy bridgehead radical reaction effected the endo‐cyclization of the seven‐membered B‐ring by forming the sterically congested bond at C9 and C10 stereospecifically and stereoselectively, respectively. Finally, the functional groups on the 5/7/6‐membered ring system were manipulated by rhodium‐catalyzed C2 olefin isomerization, C13 decarboxylative oxidation, and C4 hydroxylation, thus completing the first total synthesis of crotophorbolone.  相似文献   

15.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

16.
The seven‐membered beryllium‐containing heterocycle beryllepin, C6H6Be, has been examined computationally at the B3LYP/6‐311++G** density functional level of theory. Beryllepin is best described as a planar singlet heterocyclic conjugated triene with marginal aromatic character containing a C–Be–C moiety forced to be nonlinear (∠C‐Be‐C = 146.25°) by the cyclic constraints of the seven‐membered ring. The molecule can be considered to be derived from a benzene‐like system in which a neutral beryllium atom has been inserted between two adjacent carbon atoms. The 11 other possible “beryllium‐inserted benzenes,” C6H6Ben, n = 2–6, have also been investigated. Only two of these heterocyclic systems, the eight‐membered 1,4‐diberyllocin and the nine‐membered 1,4,7‐triberyllonin, were found to be stable, singlet‐ground‐state systems, albeit with little aromatic character. Of the remaining nine beryllium‐inserted benzenes, with the exception of the 11‐membered ring containing five beryllium atoms and the 12‐membered ring containing six beryllium atoms, which were calculated to exist as a ground state pentet and septet, respectively, all were calculated to be ground state triplet systems.  相似文献   

17.
A series of six‐ and seven‐membered expanded‐ring N‐heterocyclic carbene (er‐NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er‐NHC)AuX] (X?=BF4?, NTf2?, OTf?) were generated in solution. According to their 13C NMR spectra, the ionic character of the complexes increases in the order X?=Cl?<NTf2?<OTf?<BF4?. Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er‐NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au+] cations. A comparative study has been carried out of the catalytic activities of five‐, six‐, and seven‐membered carbene complexes [(NHC)AuX], [(Ph3P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD‐Dipp)Au]BF4 (1,3‐bis(2,6‐diisopropylphenyl)‐3,4,5,6‐tetrahydrodiazepin‐2‐ylidene gold(I) tetrafluoroborate) catalyst bearing seven‐membered‐ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.  相似文献   

18.
Thirteen‐ to eighteen‐membered lactones were synthesized by ring‐closing olefin‐metathesis reactions of bis‐olefins with heterogeneous Grubbs‐supported ionic‐liquid catalysts (SILCs), in which homogeneous Grubbs catalysts were confined in pores of alumina with the aid of an ionic liquid. The Grubbs‐SILCs exhibited higher catalytic performance than their homogeneous counterparts and could be repeatedly recovered by simple filtration and re‐used several times.  相似文献   

19.
Several types of chiral hetero‐ and carbocyclic compounds have been synthesized by using the asymmetric hydrogenation of cyclic alkenes. N,P‐Ligated iridium catalysts reduced six‐membered cyclic alkenes with various substituents and heterofunctionality in good to excellent enantioselectivity, whereas the reduction of five‐membered cyclic alkenes was generally less selective, giving modest enantiomeric excesses. The stereoselectivity of the hydrogenation depended more strongly on the substrate structure for the five‐ rather than the six‐membered cyclic alkenes. The major enantiomer formed in the reduction of six‐membered alkenes could be predicted from a selectivity model and isomeric alkenes had complementary enantioselectivity, giving opposite optical isomers upon hydrogenation. The utility of the reaction was demonstrated by using it as a key step in the preparation of chiral 1,3‐cis‐cyclohexane carboxylates.  相似文献   

20.
By application of substoichiometric amounts (50 mol %) of a chiral Lewis acid, the intramolecular [2+2] photocycloaddition of the title compounds was achieved with high enantioselectivity (up to 94 % ee). Upon cleavage of the cyclobutane ring the resulting tricyclic products underwent ring‐expansion reactions under acidic conditions and formed anellated seven‐ or eight‐membered‐ring systems without racemization. The ring expansion could be combined with a diastereoselective reduction (triethylsilane) or allylation (allyltrimethylsilane) upon BF3 catalysis (48–87 % yield).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号