首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Masahiro Suzuki  Sanae Owa 《Tetrahedron》2007,63(31):7302-7308
We describe the simple preparation of new l-lysine derivatives with a gluconic or glucoheptonic group, their hydrogelation properties, and the thermal and mechanical properties of the supramolecular hydrogels. The l-lysine derivatives with a gluconic group have no hydrogelation ability, while the l-lysine-glucoheptonamide derivatives functioned as hydrogelators. Their hydrogelation abilities increased with the decreasing length of the spacer between the l-lysine segment and the glucoheptonic group. The compound, which has no spacer, formed a supramolecular hydrogel at 0.05 wt % in pure water. The thermal stability and high mechanical strength of the supramolecular hydrogels based on this compound significantly depended on the aqueous solutions. Electron microscopy and FTIR studies demonstrated that the hydrogelators created a three-dimensional network through hydrogen bonding and hydrophobic interactions in the supramolecular hydrogel. In addition, it was found that hydrophobic interactions played an important role in the thermal stability of the supramolecular hydrogel.  相似文献   

2.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

3.
The development of hydrogels resulting from the self-assembly of low molecular weight (LMW) hydrogelators is a rapidly expanding area of study. Fluorenylmethoxycarbonyl (Fmoc) protected aromatic amino acids derived from phenylalanine (Phe) have been shown to be highly effective LMW hydrogelators. It has been found that side chain functionalization of Fmoc-Phe exerts a significant effect on the self-assembly and hydrogelation behavior of these molecules; fluorinated derivatives, including pentafluorophenylalanine (F(5)-Phe) and 3-F-phenylalanine (3-F-Phe), spontaneously self-assemble into fibrils that form a hydrogel network upon dissolution into water. In this study, Fmoc-F(5)-Phe-OH and Fmoc-3-F-Phe-OH were used to characterize the role of the C-terminal carboxylic acid on the self-assembly and hydrogelation of these derivatives. The C-terminal carboxylic acid moieties of Fmoc-F(5)-Phe-OH and Fmoc-3-F-Phe-OH were converted to C-terminal amide and methyl ester groups in order to perturb the hydrophobicity and hydrogen bond capacity of the C-terminus. Self-assembly and hydrogelation of these derivatives was investigated in comparison to the parent carboxylic acid compounds at neutral and acidic pH. It was found that hydrogelation of the C-terminal acids was highly sensitive to solvent pH, which influences the charge state of the terminal group. Rigid hydrogels form at pH 3.5, but at pH 7 hydrogel rigidity is dramatically weakened. C-terminal esters self-assembled into fibrils only slowly and failed to form hydrogels due to the higher hydrophobicity of these derivatives. C-terminal amide derivatives assembled much more rapidly than the parent carboxylic acids at both acidic and neutral pH, but the resultant hydrogels were unstable to shear stress as a function of the lower water solubility of the amide functionality. Co-assembly of acid and amide functionalized monomers was also explored in order to characterize the properties of hybrid hydrogels; these gels were rigid in unbuffered water but significantly weaker in phosphate buffered saline. These results highlight the complex nature of monomer/solvent interactions and their ultimate influence on self-assembly and hydrogelation, and provide insight that will facilitate the development of optimal amino acid LMW hydrogelators for gelation of complex buffered media.  相似文献   

4.
A series of primary ammonium monocarboxylate (PAM) salts derived from β‐alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide???amide and PAM synthons on gelation. Single‐crystal X‐ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure–property correlation based on SXRD and powder X‐ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA‐MB‐231, revealed that one of the PAM salts in the series, namely, PAA.B2 , displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.  相似文献   

5.
The title compound, trimethoprim (TMP) formate [systematic name: 2,4‐di­amino‐5‐(3,4,5‐tri­methoxy­benzyl)­pyrimidin‐1‐ium formate], C14H19N4O3+·CHO2?, reveals a pseudo‐quadruple hydrogen‐bonding motif consisting of six N—H?O hydrogen bonds involving two unpaired TMP cations and two formate anions which are symmetrically disposed. The hydrogen‐bonding motif is strikingly comparable with that observed in other TMP salts where the amino­pyrimidine moieties of the TMP cations are centrosymmetrically paired. These conserved hydrogen‐bonding motifs may serve as robust synthons in crystal engineering and design. The characteristic pseudo‐quadruple hydrogen‐bonding motif and other intermolecular hydrogen bonds operating in the crystal form a two‐dimensional supramolecular sheet structure.  相似文献   

6.
Low‐molecular‐weight compounds based on L ‐lysine with alkylpyridinium or ‐imidazolium groups have been synthesized and studied for their gelation behavior in H2O. Most compounds formed gels below a concentration of 2.5 weight‐%, the pyridinium bromide 2a and the 1‐methyl‐1H‐imidazolium bromide 3 even at 0.1 weight‐%. The minimum gel concentration (MGC) necessary for hydrogelation increased with increasing length of the Lys Nα‐alkanoyl chain, but the gelation ability concomitantly decreased. Electron‐microscopic images demonstrated that these hydrogelators create a three‐dimensional network in H2O by entanglement of self‐assembled nanofibers. A fluorescence study with 8‐anilinonaphthalene‐1‐sulfonic acid (ANS) proved that some hydrophobic aggregates are formed at hydrogelator concentrations below an MGC of less than 50 μM (0.004%). FT‐IR, 1H‐NMR, and Fluorescence studies indicated that the driving forces for the self‐assembly into nanofibers are mainly hydrophobic interactions and H‐bonding between amide groups.  相似文献   

7.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

8.
Primary amides are unique supramolecular synthons possessing two hydrogen donors and two hydrogen acceptors. By interacting in a complementary fashion, primary amides reliably generate two-dimensional hydrogen bonded networks that differ from conventional hydrogen bonded structures such as carboxylic acid dimers or one-dimensional secondary amide chains. This feature permits the design of sophisticated supramolecular assemblies based on primary amides (especially aromatic amides). Several interesting crystal structures have been constructed utilizing primary amides, although such structures have been applied only in the field of crystal engineering because the networks strongly favor crystallization. Expansion of the applications of primary amides to liquid crystals and self-assembly in solution requires an appropriate balance between primary amide-based hydrogen bonding and other noncovalent interactions. This perspective article reviews the key hydrogen bonding properties of primary amides determined from crystal structure studies, and a variety of supramolecular assemblies involving primary amides are discussed. A new strategy for overcoming crystallinity and solubility issues is proposed, involving introduction of a trifluoromethyl group at the ortho position of the aromatic primary amide. Such substitutions produce highly processable primary amides, while maintaining the two-dimensional hydrogen bonded network. Examples of self-assembly using 2-trifluoromethylbenzamide demonstrate its usefulness in self-assembly.  相似文献   

9.
A chiral bisurea‐based superhydrogelator that is capable of forming supramolecular hydrogels at concentrations as low as 0.2 mM is reported. This soft material has been characterized by thermal studies, rheology, X‐ray diffraction analysis, transmission electron microscopy (TEM), and by various spectroscopic techniques (electronic and vibrational circular dichroism and by FTIR and Raman spectroscopy). The expression of chirality on the molecular and supramolecular levels has been studied and a clear amplification of its chirality into the achiral analogue has been observed. Furthermore, thermal analysis showed that the hydrogelation of compound 1 has a high response to temperature, which corresponds to an enthalpy‐driven self‐assembly process. These particular thermal characteristics make these materials easy to handle for soft‐application technologies.  相似文献   

10.
A new hydrogelator based on L ‐phenylalanine with a long hydrophobic chain and positively charged terminus was synthesized, and its gelation behavior in H2O was investigated. Polarized optical microscopy (POM), field emission scanning electron microscopy (FE‐SEM), and X‐ray diffraction (XRD) results indicate that the hydrogelator self‐assembles into fibres‐like aggregates which then lead to the formation of a hydrogel. 1H‐NMR and CD spectra of hydrogels and aqueous solution revealed that intermolecular H‐bonding between the amide groups was the driving force for gelation. A luminescence study, in which ANS (8‐anilinonaphthalene‐1‐sulfonic acid) was used as a probe, indicated that the hydrophobic interactions between long chains were the driving force for gelation. Consequently, it was proved that the hydrogelator self‐assembles into fibre‐like aggregates and then forms supramolecular hydrogels through the H‐bonding and hydrophobic interactions.  相似文献   

11.
Indomethacin ( IND ), which is a well‐known nonsteroidal anti‐inflammatory drug (NSAID), was conjugated with various naturally occurring amino acids. Most of these bioconjugates were capable of gelling pure water, a solution of NaCl (0.9 wt %), and phosphate‐buffered saline (pH 7.4), as well as a few organic solvents. The gels were characterized by table‐top and dynamic rheology, and electron microscopy. Variable‐temperature 1H NMR spectroscopy studies on a selected gel were performed to gain insights into the self‐assembly process during gel formation. Both 1D and 2D hydrogen‐bonded networks were observed in the single‐crystal structures of two of the gelators. Plausible biological applications of the hydrogelators were evaluated with the ultimate aim of drug delivery in a self‐delivery fashion. All hydrogelators were stable in phosphate‐buffered saline at pH 7.4 at 37 °C, and biocompatible in mouse macrophage RAW 264.7 cell line (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay). Two of the most biocompatible hydrogelators displayed an anti‐inflammatory response comparable to that of the parent drug IND in prostaglandin E2 assay. Release of the bioconjugates into the bulk solvent interfaced with the corresponding hydrogels indicated their plausible future application in drug delivery.  相似文献   

12.
A double hydrogen bonding (DHB) hydrogel is constructed by copolymerization of 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine (hydrophobic hydrogen bonding monomer) and N,N‐dimethylacrylamide (hydrophilic hydrogen bonding monomer) with polyethylene glycol diacrylates. The DHB hydrogels demonstrate tunable robust mechanical properties by varying the ratio of hydrogen bonding monomer or crosslinker. Importantly, because of synergistic energy dissipating mechanism of strong diaminotriazine (DAT) hydrogen bonding and weak amide hydrogen bonding, the DHB hydrogels exhibit high toughness (up to 2.32 kJ m−2), meanwhile maintaining 0.7 MPa tensile strength, 130% elongation at break, and 8.3 MPa compressive strength. Moreover, rehydration can help to recover the mechanical properties of the cyclic loaded–unloaded gels. Attractively, the DHB hydrogels are responsive to CO2 in water, and demonstrate unprecedented CO2‐triggered shape memory behavior owing to the reversible destruction and reconstruction of DAT hydrogen bonding upon passing and degassing CO2 without introducing external acid. The CO2 triggering mechanism may point out a new approach to fabricate shape memory hydrogels.  相似文献   

13.
Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.  相似文献   

14.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

15.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

16.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   

17.
The title methanol solvate, C24H22N4O5·CH3OH, forms an extended three‐dimensional hydrogen‐bonded structure, assisted by the presence of several good donor and acceptor sites. It shows none of the crystal packing features typically expected of piperazinediones, such as amide‐to‐amide R22(8) hydrogen bonding. In this structure the methanol solvent appears to play only a space‐filling role; it is not involved in any hydrogen bonding and instead is disordered over several sites. This study reports, to the best of our knowledge, the first crystal structure of an indane‐containing piperazinedione compound which exhibits a three‐dimensional hydrogen‐bonded structure formed by classical (N—H...O and N—H...N) hydrogen‐bonding interactions.  相似文献   

18.
Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C?X???X?C/C?X???π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l ‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.  相似文献   

19.
Understanding the structure‐morphology relationships of self‐assembled nanostructures is crucial for developing materials with the desired chemical and biological functions. Here, phosphate‐based naphthalimide (NI) derivatives have been developed for the first time to study the enzyme‐instructed self‐assembly process. Self‐assembly of simple amino acid derivative NI‐Yp resulted in non‐specific amorphous aggregates in the presence of alkaline phosphatase enzyme. On the other hand, NI‐FYp dipeptide forms spherical nanoparticles under aqueous conditions which slowly transformed into partially unzipped nanotubular structures during the enzymatic catalytic process through multiple stages which subsequently resulted in hydrogelation. The self‐assembly is driven by the formation of β‐sheet type structures stabilized by offset aromatic stacking of NI core and hydrogen bonding interactions which is confirmed with PXRD, Congo‐red staining and molecular mechanical calculations. We propose a mechanism for the self‐assembly process based on TEM and spectroscopic data. The nanotubular structures of NI‐FYp precursor exhibited higher cytotoxicity to human breast cancer cells and human cervical cancer cells when compared to the nanofiber structures of the similar Fmoc‐derivative. Overall this study provides a new understanding of the supramolecular self‐assembly of small‐molecular‐weight hydrogelators.  相似文献   

20.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号