首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gold(I) selenolate compound [Au(2)(SePh)(2)(mu-dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) has been prepared by reaction of [Au(2)Cl(2)(mu-dppf)] with PhSeSiMe(3) in a molar ratio 1:2. This complex reacts with gold(I) or gold(III) derivatives to give polynuclear gold(I)-gold(I) or gold(I)-gold(III) complexes of the type [Au(4)(mu-SePh)(2)(PPh(3))(2)(mu-dppf)](OTf)(2), [Au(3)(C(6)F(5))(3)(mu-SePh)(2)(mu-dppf)], or [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)], with bridging selenolate ligands. The reaction of [Au(2)(SePh)(2)(mu-dppf)] with 1 equiv of AgOTf leads to the formation of the insoluble Ag(SePh) and the compound [Au(2)(mu-SePh)(mu-dppf)]OTf. The complexes [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)] and [Au(2)(mu-SePh)(mu-dppf)]OTf (two different solvates) have been characterized by X-ray diffraction studies and show the presence of weak gold(I)-gold(III) interactions in the former and intra- and intermolecular gold(I)-gold(I) inter-actions in the later.  相似文献   

2.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

3.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

4.
We have synthesized and characterized a series of trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine; X = Cl 1, Br 2, I 3, C(6)F(5) 4) and di- and trinuclear gold(III) complexes [[Au(C(6)F(5))(3)](n)(mu-triphos)] (n = 2 (5), 3 (6)). The crystal structure of 6 [[Au(C(6)F(5))(3)](3)(mu-triphos)] has been determined by X-ray diffraction studies, which show the triphosphine in a conformation resulting in very long gold-gold distances, probably associated with the steric requirements of the tris(pentafluorophenyl)gold(III) units. Complex 6 crystallizes in the triclinic space group P(-1) with a = 12.7746(16) A, b = 18.560(2) A, c = 21.750(3) A, alpha = 98.215(3) degrees, beta = 101.666(3) degrees, gamma = 96.640(3) degrees, and Z = 2. Chloride substitutions in complex 1 afford trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (X = Fmes (1,3,5-tris(trifluoromethyl)phenyl) 7, p-SC(6)H(4)Me 8, SCN 9) and [Au(3)Cl(3)(-)(n)()(S(2)CNR(2))(n)(mu-triphos)] (R = Me, n = 3 (10), 2 (12), 1 (14); R = CH(2)Ph, n = 3 (11), 2 (13), 1 (15)). The luminescence properties of these complexes in the solid state have been studied; at low temperature most of them are luminescent, including the gold(III) derivative 6, with the intensity and the emission maxima being clearly influenced by the nature and the number of the ligands bonded to the gold centers.  相似文献   

5.
The reactions of sodium (aza-15-crown-5)dithiocarbamate with [AuClL] precursors lead to mono-, di-, or hexanuclear derivatives depending on L. The homoleptic hexanuclear gold(I) cluster [Au6(S2CNC10H20O4)6] is formed by displacement of the chloride and isocyanide ligands in [AuCl(CN(2,6-Me2C6H3))]. X-ray diffraction studies show a novel geometry in gold cluster chemistry where the six gold atoms display a cyclohexane-like geometry in a chair conformation with Au-Au-Au angles of 117.028(9) degrees, two short gold-gold distances of 2.9289(5) A, and bidentate bridging dithiocarbamate ligands. The molecular structure shows a crown of gold atoms surrounded by crown ethers. This derivative luminesces at 569 nm at room temperature in the solid state. A dinuclear isomer [Au2(S2CNC10H20O4)2] had been reported previously and was obtained by reaction with [AuCl(SMe2)]. The mechanism to obtain the hexanuclear derivative involves a mononuclear intermediate [Au(S2CNC10H20O4)(CNR)] for which the X-ray structure shows a short gold-gold distance of 3.565 A with the two molecules in an anti configuration. Phosphine gold(I) mononuclear derivatives [Au(S2CNC10H20O4)(PR3)] (R = Me, Ph, both characterized by X-ray diffraction) and dinuclear diphosphine derivatives [{Au(S2CNC10H20O4)}2(mu-P-P)] (P-P = dppm, bis(diphenylphosphinomethane); dppp, 1,3-bis(diphenylphosphinopropane); and dppf, 1,1'-bis(diphenylphosphinoferrocene)) are also reported. In the mononuclear complexes, the molecular structure confirms that the dithiocarbamato ligand is mainly acting as monodentate, with a second longer Au-S distance of 3.197 (PMe3), 2.944(4) (PPh3), and 2.968 A (CNR). Three phosphine complexes are emissive at 562 (PMe3), 528 (PPh3), and 605 nm (dppm), at 77 K. X-ray diffraction studies of the dppm derivative show gold-gold intramolecular contacts of 3.0972(9) A (3.2265(10) A for a second independent molecule) and basically monodentate coordination of the dithiocarbamato ligands. All the complexes extract sodium and potassium salts from aqueous solutions. The diphosphine derivatives are noticeably better extractors than the monophosphino derivatives, mainly for potassium salts.  相似文献   

6.
A crown ether isocyanide CNR (R = benzo-15-crown-5) has been synthesized by dehydration of the corresponding formamide. Substitution reactions with the appropriate gold(I) precursors afford the luminescent mononuclear derivatives [AuX(CNR)] (X = Cl, C 6F 5, Br, I), [Au(C 6F 4OCH 2C 6H 4OC nH 2 n+1 - p)(CNR)] ( n = 4, 8, 10, 12), and [Au(C 6F 4OCH 2C 6H 2-3,4,5-(OC n H 2 n+1 ) 3(CNR)] ( n = 4, 8, 12). X-ray diffraction studies of [AuCl(CNR)] show the molecules associated in a tetranuclear manner with an antiparallel orientation and gold-gold distances of 3.420 and 3.427 A (Au...Au...Au angles are 121.2 degrees ). These tetranuclear units generate infinite zigzag chains through longer Au...Au distances of 3.746 A and weak C-H...O nonclassic interactions. Nucleophilic attack to the coordinated isocyanide in [AuCl(CNR)] by methanol or a primary amine produces the carbene derivatives [AuCl{C((NHR)(OMe)}] and [AuCl{C(NHR')(NHR)}] (R' = Me, n-Bu). The ether crown in these complexes is able to coordinate sodium from NaClO 4, affording the corresponding bimetallic complexes (Na/Au = 1:1). The derivatives containing one alkoxy chain are liquid crystals, displaying a smectic C mesophase (for n > 4), whereas the trialkoxy derivatives display unidentified or smectic C mesophases, depending on the alkyl chain length. After complexation of sodium salts, the mesogenic behavior is lost. All of the derivatives are luminescent at room temperature in the solid state with emission maxima in the range 405-550 nm; they emit at 77 K from 410 to 572 nm. Only the ligand and the fluoroaryl complexes emit in solution at room temperature, but all of the compounds are luminescent at 77 K. Very interestingly, some fluoroaryl derivatives with alkoxy chains are luminescent not only in the solid, and in solution, but also in the mesophase, and in the isotropic liquid at moderate temperatures. These are the first metal complexes ever reported to show luminescence in the isotropic liquid state.  相似文献   

7.
Na[BH(pz)(3)] and Na[AuCl(4)].2H(2)O react in water (1:1) to give [Au[kappa(2)-N,N'-BH(pz)(3)]Cl(2)] (1) or, in the presence of NaClO(4) (2:1:1), the cationic complex [Au[kappa(2)-N,N'-BH(pz)(3)](2)]ClO(4) (2). The reactions of Na[B(pz)(4)] with the cyclometalated gold complexes [AuRCl(2)] and NaClO(4) (1:1:1) produce [Au[kappa(2)-N,N'-B(pz)(4)](R)]ClO(4) [R = kappa(2)-C,N-C(6)H(4)CH(2)NMe(2)-2 (3)] or [Au[kappa(2)-N,N'-B(pz)(4)](R)Cl] [R = C(6)H(3)(N=NC(6)H(4)Me-4')-2-Me-5 (4)], respectively, although 4 is better obtained in the absence of NaClO(4). The crystal structures of 1 and 3.CHCl(3) are reported. Both complexes display the gold center in square planar environments, two coordination sites being occupied by the chelating poly(pyrazolyl)borate ligands.  相似文献   

8.
A comprehensive study of the structural and spectroscopic properties of two-, three-, and four-coordinate copper(I) complexes with aliphatic phosphine ligands is presented. All complexes described in this work are characterized by X-ray crystallography. The intramolecular Cu...Cu separations in [Cu2(dcpm)2]X2, [Cu2(dcpm)2-(CH3CN)2]X2, and [Cu2(dmpm)3]-(ClO4)2 (dcpm=bis(dicyclohexylphosphino)methane; dmpm=bis(dimethylphosphino)methane; X=ClO4- and PF6-) are in the range 2.639(2)-3.021(2) A. The anion...CuI interaction is weak, as evidenced by the nearest O...Cu separation of 2.558(6) A in [Cu2(dcpm)2](ClO4)2 and the closest Cu...F separation of 2.79(1) A in [Cu2(dcpm)2](PF6)2. The absorption bands of [Cu2(dcpm)2]X2 and [Cu2(dcpm)2(CH3CN)2]X2 (X=ClO4- and PF6-) at lambda max 307-311 nm in CH2Cl2 are assigned as 1[3d sigma* --> 4p sigma] transitions; this has been confirmed by resonance Raman spectroscopy. The triplet emissions in the visible region from these complexes exhibit long lifetimes and are sensitive to the environment. The lowest emissive excited state is tentatively ascribed as 3[(dx2-y2, dxy)(pz)] in nature. For [Cu2(dcpm)2]2+ salts in CH3CN, the emissive species is postulated to be [Cu2(dcpm)2(CH3CN)n]2+ (n > or = 3). Efficient photocatalytic reduction of MV2+ (4,4'-dimethyl-2,2'-bipyridinium) to MV+ in alcoholic solutions by using [Cu2(dcpm)2](PF6)2 or [Cu2(dppm)2(CH3CN)4](ClO4)2 (dppm=bis(diphenylphosphino)methane) as a catalyst has been observed. The addition of CH3CN or use of [Cu2(dmpm)3]-(ClO4)2 as a catalyst did not allow photocatalytic reduction processes to occur.  相似文献   

9.
We report herein the supramolecular assembly and spectroscopic and luminescent properties of gold(I) complexes of diphosphines (dppm [bis(diphenylphosphino)methane], dppp [1,3-bis(diphenylphosphino)propane], and dpppn [1,5-bis(diphenylphosphino)pentane]) and N,N'-bis-4-methylpyridyl oxalamide (L). The dppm and dppp cases form the rectangular structures, [dppm(Au(2))L](2)(ClO(4))(4) and [dppp(Au(2))L](2)(ClO(4))(4), with four gold(I) ions at the corners, as well as two L and two dppm or dppp ligands as edges, featuring 38- and 42-membered rings for the former and the latter, respectively. Remarkably, the packing of the dppp complexes shows interesting one-dimensional rectangular channels in the solid state, most likely due to intermolecular pi...pi interactions. The dpppn complex has been structurally characterized as a one-dimensional coordination polymer, {[(dpppn)(3.5)(Au(7))L(3.5)](PF(6))(7)}. The absorptions and emissions of the compounds are in general due to intraligand transitions, but aurophilic or pi...pi interactions could also make partial contributions. The dipyridyl amide system with the amides incorporated into the bridging ligands as well as the one-dimensional rectangular channels in the solid state for the dppp-based rectangle make this a promising family of metal-containing cyclic peptides in crystal engineering and molecular-recognition studies.  相似文献   

10.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

11.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

12.
Receptor-containing polynuclear mixed-metal complexes of gold(I)-copper(I) 1-3 based on a [{Au(3)Cu(2)(C≡CPh)(6)}Au(3){PPh(2)-C(6)H(4)-PPh(2)}(3)](2+) (Au(6)Cu(2)) core with benzo-15-crown-5, oligoether and urea binding sites were designed and synthesized, respectively. These complexes exhibited remarkably strong red emission at ca. 619-630 nm in dichloromethane solution at room temperature upon photoexcitation at λ > 400 nm, with the emission quantum yield in the range 0.59-0.85. The cation-binding properties of 1 and 2 and the anion-binding properties of 3 were studied using UV-vis, emission and (1)H NMR techniques. Complex 1, with six benzo-15-crown-5 pendants, was found to show a higher binding preference for K(+), with a selectivity trend of K(+)? Cs(+) > Na(+) > Li(+). The addition of metal ions (Li(+), Na(+), K(+) and Cs(+)) to complex 1 led to a modest emission enhancement with a concomitant slight blue shift in energy and well-defined isoemissive points, which is attributed to the rigidity of the structure and the inhibited PET (photo-induced electron transfer) process from the oxygen to the aggregate as a result of the binding of the metal ion. The six urea receptor groups on complex 3 were found to form multiple hydrogen bonding interactions with anions, with the positive charge providing additional electrostatic interaction for anion-binding. The anion selectivity of 3 follows the trend F(-) > Cl(-)≈ H(2)PO(4)(-) > Br(-) and the highest affinity towards F(-) is attributed to the stronger basicity of F(-), as well as its good size match with the cavity of the urea pocket.  相似文献   

13.
The synthesis and characterization of gold(I) complexes of butyl xanthate [Au(2)((n)()Bu-xanthate)(2)], 1, and ethyl xanthate [Au(2)(Et-xanthate)(2)], 2, are described. These complexes are readily prepared from the reaction between Au(THT)Cl (THT = tetrahydrothiophene) and the corresponding xanthate ligands as the potassium salts. The two xanthate complexes are characterized by (1)H NMR, IR, mass spectrometry, elemental analysis, and UV-vis techniques. Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) show that the gold xanthate complexes decompose to yield mainly gold metal at approximately 200 degrees C, confirmed by X-ray powder diffraction. Excitation of the complexes at 450 nm in the solid state at 77 K produces a strong red emission at ca. 690 nm with a broad asymmetric profile tailing to 850 nm. The dinuclear gold(I) xanthate complex, [Au(2)(nBu-xanthate)(2)], 1, is the first structurally characterized binary Au(I) xanthate. The Au...Au distance in the eight-membered ring is 2.8494(15) A while the shortest intermolecular Au...Au interaction between independent units is 3.64 A. The angle between the planes containing the molecules in the unit cell is approximately 69.56 degrees. The light green plates of [Au(mu-S(2)COBu(n))](2) crystallize in the orthorhombic space group P2(1)2(1)2 with a = 37.254(14) A, b = 7.287(3) A, c = 6.054(2) A, alpha = beta = gamma = 90 degrees, Z = 4, and V = 1643.4(11) A(3).  相似文献   

14.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

15.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

16.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

17.
Treatment of the gold(I) halide complexes LAuCl (L = PMe3, PPh3, CNC6H3Me2-2,6) with K[Ph2P(Se)NP(Se)Ph2] provides the gold-selenium coordination compounds [(N(Ph2PSe)2-Se,Se')AuL]. However, on standing for a number of days, the complex [(N(Ph2PSe)2-Se,Se')AuPMe3] gains a phosphine to provide the bis(phosphine) species [(N(Ph2PSe)2-Se,Se')Au(PMe3)2]. Treatment of the K[Ph2P(Se)NP(Se)Ph2] ligand with [(Ph3PAu)3O]BF4 allows the isolation of [(N(Ph2PSe)2-Se,Se')(AuPPh3)2]BF4. Reaction of the complex [(dppm)(AuCl)2] with AgSO3CF3 followed by addition of the ligand K[Ph2P(Se)NP(Se)Ph2] results in the formation of [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3 and treatment of [(tht)AuCl] (tht = tetrahydrothiophene) with an equimolar quantity of K[Ph2P(Se)NP(Se)Ph2] affords the complex [(N(Ph2PSe)2-Se,Se')2Au2]. The compounds [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3, [(N(Ph2PSe)2-Se,Se')AuPPh3] and [(N(Ph2PSe)2-Se,Se')Au(PMe3)2] have been investigated crystallographically. The results reveal that the metal centers are two-, three-, and four-coordinate, respectively. The cationic, eight-membered ring complex bearing the dppm ligand displays transannular aurophilic bonding and is further associated into dimers via intermolecular gold-selenium contacts. The six-membered rings in the other two structures have C2-symmetrical twist conformations, however, the Au(I) coordination sphere in [N(PPh2Se)2]AuPPh3 is not fully symmetrical. The Au-Se bond lengths increase dramatically as the coordination number of the metal atom becomes larger.  相似文献   

18.
The structures of the trinuclear gold(I), [Au(3)(2,6-Me(2)-form)(2)-(THT)Cl], the dinuclear [Au(2)(2,6-Me(2)-form)(2)], and the oxidative-addition product [Au(2)(2,6-Me(2)-form)(2)Cl(2)] formamidinate complexes are reported. The trinuclear complex is stable with gold-gold distances 3.01 and 3.55 A. The gold-gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 A, similar to observations made with the dithiolates and ylides.  相似文献   

19.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

20.
The binuclear cycloaurated compounds [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(2)] (n = 5, 1a; n = 6, 1b) react with the digold(I) complexes [Au(2)(mu-S(2)CN(n)()Bu(2))(2)] and [Au(2)(mu-dppm)(2)](PF(6))(2) to give heterobridged dinuclear complexes [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-S(2)CN(n)Bu(2))] (n = 5, 5a; n = 6, 5b) and [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-dppm)]PF(6), (n = 5, 9a; n = 6, 9b), respectively. Complex 5a exists in the solid state as an infinite zigzag chain of dimeric units with intramolecular Au-Au separations of 2.8331(3) and 2.8243(3) A for independent molecules and intermolecular Au-Au separations of 3.0653(3) and 3.1304(3) A. Both 5a and 5b undergo oxidative addition with halogens to give the heterovalent, gold(I)-gold(III) compounds [XAu(I)(mu-2-Ph(2)PC(6)H(3)-n-Me)Au(III)X(eta(2)-S(2)CN(n)Bu(2))] [n = 5, X = Cl (6a), I (8a); n = 6, X = Cl (6b), Br (7b), I (8b)]. Compound 8a has been shown by X-ray crystallography to contain a gold(III) atom coordinated in a planar array by bidentate, chelating di-n-butyldithiocarbamate, iodide, and the sigma-aryl carbon atom, together with a gold(I) atom that is linearly coordinated by the phosphorus atom of the arylphosphine and by iodide. The intramolecular gold-gold distance of 3.2201(3) A indicates little or no interaction between the metal atoms. In contrast to the behavior of the homobridged complexes 1a and 1b, the heterobridged dithiocarbamate complexes 5a and 5b give structurally similar products on reaction with halogens, irrespective of the position of the ring methyl substituent. Crystal data for [Au(2)(mu-C(6)H(3)-2-PPh(2)-5-Me)(mu-S(2)CN(n)Bu(2))] (5a): triclinic, space group P1 (No. 2), with a = 11.3398(1), b = 15.9750(2), c = 16.4400(3) A, alpha = 91.0735(9), beta = 109.3130(7), gamma = 90.7666(8) degrees, V = 2809.47(6) A(3), and Z = 4. Crystal data for [IAu(I)(mu-2-Ph(2)PC(6)H(3)-5-Me)Au(III)I(eta(2)- S(2)CN(n)Bu(2))] (8a): triclinic, space group P1 (No. 2), with a = 8.6136(2), b = 9.3273, c = 21.1518(4) A, alpha = 84.008(1), beta = 84.945(1), gamma = 75.181(1) degrees, V = 1630.54(6) A(3), and Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号