首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Silicas with hierarchical porous architectures attracted much attention, due to their potential applications in catalysis and separation. Generally, they were prepared through dual‐ or triple‐templating approaches. Herein, mesoporous silica nanoparticles with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared using the self‐assemblies of a chiral low‐molecular‐weight amphiphile as templates through a single‐templating approach. The formation of the lamellar mesopores was studied by taking field‐emission scanning electron microscopy and transmission electron microscopy images after different reaction times. The lamellar pores were proposed to be formed by merging rod‐like micelles during the sol‐gel process. Moreover, helical nanofibers with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared with the addition of n‐octanol as a co‐structure‐directing agent.  相似文献   

2.
The morphologies and pore architectures of mesoporous ethenylene‐silica were controlled using cetyltrimethylammonium bromide (CTAB) as template and (S)‐β‐citronellol as a co‐structure‐directing agent under basic conditions. When the (S)‐β‐citronellol/CTAB molar ratios are in the range of 0.75–2.0, helical nanofibers were obtained. With increasing the (S)‐β‐citronellol/CTAB molar ratio, the lengths of the nanofibers increases. Lamellar mesopores were identified on the surfaces of the nanofibers prepared in the (S)‐β‐citronellol/CTAB molar ratio range of 1.5–2.0. At the (S)‐β‐citronellol/CTAB molar ratio of 2.5:1, nanoparticles with nanoflakes on the surfaces were obtained. The field emission scanning electron microscopy images taken after different reaction times indicated that the helical pitches of the nanofibers decreased with increasing the reaction time. Helical 1,4‐phenylene‐silica and methylene‐silica nanofibers were also prepared. The results indicated that the morphologies and pore architectures of the obtained organic‐inorganic hybrid silicas are also sensitive to the hybrid silica precursors. Helical ethenylene‐silica nanofibers with lamellar mesopores on their surfaces can be also prepared using the mixtures of CTAB and racemic citronellol within a narrower citronellol/CTAB molar ratio range.  相似文献   

3.
Helical mesoporous silica nanorods were prepared using cetyltrimethylamrnonium bromide and achiral alcohols as the co-structure-directing agents.They were characterized using field-emission scanning electron microscopy,transmission electron microscopy,nitrogen sorptions,and small angle X-ray diffraction.The length of the silica nanorods increases with increasing the length of the alcohols.When n-heptanol and n-octanol were used,helical mesoporous silica nanorods with lamellar mesopores on the surfaces were obtained.  相似文献   

4.
电化学电容器已经成为极具潜力的可满足高功率需求的储能系统器件. 多孔炭具有大比表面积、高导电性、化学惰性、廉价及可调孔结构等优势, 因此成为电化学电容器最为常用的电极材料. 本文报道由微孔棒状羟基磷灰石为模板及蔗糖为碳源合成的新型具有层次孔道结构的孔炭材料的电化学电容器的性能. 采用X射线衍射分析仪、扫描电子显微镜、透射电子显微镜、X射线光电子能谱及BET表面分析仪表征了合成的多孔炭的形貌及表面特性. 采用循环伏安法、交流阻抗图谱分析及恒流充放电评价多孔炭材料在1 mol·L-1硫酸中的电化学电容性能. 多孔炭具有高的比表面积(719.7 m2·g-1)和大的孔容(1.32 cm3·g-1), 其无序的孔道由任意分布的微孔、坍塌的中孔及类模板形状的相互交织的棒状中孔组成. 随着炭化温度的增加, 微孔及棒状中孔的密度随之降低, 在炭化温度高达900℃时, 孔径分布图上出现了三个峰. 正是由于这些特殊的结构特征, 由900℃炭化得到的多孔炭制成的电极展示出很好的电化学电容性能.  相似文献   

5.
The morphology, pore architecture and crystallinity of the mesoporous 1,4‐phenylene‐silicas were controlled using the mixtures of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). When the SDS/CTAB molar ratio increased from 0 to 1.0, the morphology of the mesoporous 1,4‐phenylene‐silicas changed in a sequence of sphere, hexagonal short rod, worm‐like, bent flake and flower‐like structure; the pore architecture of them changed from a hexagonal arranged tubular structure to a lamellar one; and the organization of the smallest repeat units within the wall changed from a random structure to a crystalline structure. At the SDS/CTAB molar ratios of 0.3 and 0.5, 1,4‐phenylene‐silica nanofibers with lamellar mesopores outside and tubular pore channels inside were obtained. The lamellar mesopores should be formed by merging the rod‐like micelles during the reaction process.  相似文献   

6.
Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorcinol/formaldehyde as the carbon source under highly acidic conditions. The template can be eliminated by high temperature treatment under an inert atmosphere. The obtained carbon materials were characterized by N2 adsorption-desorption, transmission electron microscopy, thermogravimetry and scanning electron microscopy. The results show that dodecylamine hydrochloride surfactant can be used as the template of wormlike micropores structure while octadecylamine hydrochloride results in both lamellar and wormlike micropores. The obtained carbon materials have the similar pore size in the range of 0.5~0.59 nm, but with various morphologies such as monolith, spheres, and coralline. The microporous carbon obtained from dodecylamine hydrochloride surfactant shows good adsorption performance to remove the refractory sulfur compounds and nitrogen-containing compounds in fuel.  相似文献   

7.
Single‐handed helical silica nanotubes containing chiral organic self‐assemblies were prepared by using a supramolecular templating approach. After carbonization and the removal of the silica, single‐handed helical carbonaceous nanotubes that contained twisted carbonaceous nanoribbons were obtained. It is believed that the nanotubes formed as a result of the adsorption of low‐molecular‐weight gelators. The twisted nanoribbons were formed because of the carbonization of the organic self‐assemblies. The samples were characterized by using field‐emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and circular dichroism. For the samples carbonized at 900 °C for 3.0 h, a partially graphitized structure was identified. The circular dichroism (CD) spectra indicated that the twisted nanoribbons exhibited optical activity. The CD spectrum was simulated by using time‐dependent density functional theory. The results suggested that the CD signals originated from the chiral stacking of aromatic rings.  相似文献   

8.
Using lipids (N-acyl amino acids) and 3-aminopropyltriethoxysilane as structure- and co-structure-directing agents, mesoporous silicas with four different morphologies, that is, helical ribbon (HR), hollow sphere, circular disk, and helical hexagonal rod, were synthesized just by changing the synthesis temperature from 0 degrees C to 10, 15, or 20 degrees C. The structures were studied by electron microscopy. It was found that 1) the structures have double-layer disordered mesopores in the HR, radially oriented mesopores in the hollow sphere, and highly ordered straight and chiral 2D-hexagonal mesopores in the disklike structure and helical rod, respectively; 2) these four types of mesoporous silica were transformed from the flat bilayered lipid ribbon with a chain-interdigitated layer phase through a solid-solid transformation for HR formation and a dissolving procedure transformation for the synthesis of the hollow sphere, circular disk, and twisted morphologies; 3) the mesoporous silica helical ribbon was exclusively right-handed and the 2D-hexagonal chiral mesoporous silica was excessively left-handed when the L-form N-acyl amino acid was used as the lipid template; 4) the HR was formed only by the chiral lipid molecules, whereas the 2D-hexagonal chiral mesoporous silicas were formed by chiral, achiral, and racemic lipids. Our findings give important information for the understanding of the formation of chiral materials at the molecular level and will facilitate a more efficient and systematic approach to the generation of rationalized chiral libraries.  相似文献   

9.
Highly aligned and twisted composite Nylon 6 nanofibers incorporating multiwall carbon nanotubes (MWCNTs) were successfully electrospun, using a novel mechanism. It has been found that; ultrasound combined with high speed shearing is the simplest and most convenient method to improve the dispersion of MWCNTs into a polymer matrix with a certain loading. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to characterize the morphology of nanofibers, the dispersion of MWCNTs and their alignment inside the fiber body. By manipulating the electrical forces during electrospinning and applying mechanical stretching to the electrospun nanofibers, high polymer chain orientation and better alignment of the MWCNTs particles along the fiber axis was achieved. Twist was applied to the nanofibers for providing the required inter fiber lateral cohesion interaction and friction thus, spinning a continuous twisted composite yarn. SEM images show twisted yarns with diameters ranging between 5 and 10 μm. The twist effect of the parallel bundle was investigated by controlling the twist per unit length using a motor speed controller at values of 100, 250, 500, 750 and 1000 rpm. The paper also provides a comprehensive review of various yarn spinning mechanisms of electrospun nanofibers.  相似文献   

10.
在传统球状介孔氧化硅合成工作的基础上,以正硅酸乙(TEOS)和γ-巯丙基三甲氧基硅烷(MPTMS)为硅源,在水体系下利用共缩聚法一步合成出具有介孔分子筛结构特征的纳米纤维,并通过扫描电子显微镜(SEM)、小角X射线衍(XRD)、透射电子显微镜(TEM)和氮气吸附-脱附实验对样品进行了表征与分析.  相似文献   

11.
混合模板法制备螺旋纳米结构二氧化硅   总被引:2,自引:0,他引:2  
用凝胶剂高氯酸环(L-11-(N-甲基咪唑)十一烷基天冬酰胺-L-苯丙酰胺)(11mim ClO4)和十六烷基三甲基氯化铵(CTAC)作模板剂,经溶胶-凝胶过程,制备纳米结构二氧化硅.使用冷场发射扫描电镜(FESEM),表征了多种反应条件下样品的形貌和表面结构.结果表明,通过调节CTAC和凝胶剂的质量比,可以得到螺旋介孔二氧化硅纳米纤维,其长度为数百纳米,孔径为3.0nm.  相似文献   

12.
Hexagonally structured mesoporous carbons C15 and CMK-5 and cubically structured carbon C48 were synthesized using ordered silica SBA-15 and MCM-48 as templates and carbon precursors of different structures. The surfaces of these ordered carbons were chemically functionalized by employing an approach, in which the selected diazonium compounds were in situ generated and reacted with the carbon frameworks of the mesoporous carbons. The aromatic organic molecules containing chlorine, ester, and alkyl groups were covalently attached to the surface of these ordered mesoporous carbons. The presence of functional groups on the modified carbons was confirmed with Fourier transform infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption. The BET-specific surface area and the pore width of ordered carbons were significantly reduced, whereas the primary structure of these ordered carbons and their unit cells were intact. Basically, the density of grafted functional groups is related to the specific surface area of the sample, particularly the surface area of mesopores. The surface functionalization reaction takes place only on the external surface of carbon C15, while it occurs on both of the internal and external surface of CMK-5 carbon with the nanopipe structure. The presence of the micropores in CMK-5 carbon should be responsible for its lower grafting density because the small micropores are inaccessible in the reaction. It was also proposed that the preferred adsorption/reaction in C48 may be related to the observed unsymmetrical degradation of the XRD patterns for the functionalized C48 samples. The chemical modification process considerably reduced the primary mesopores in these ordered carbons by approximately 1-1.5 nm, affording carbons with micropores in the cases of C15 and C48, and mixed micropores and small mesopores in the case of CMK-5. A grafting density of approximately 0.9-1.5 micromol/m(2) was achieved under current research.  相似文献   

13.
以聚丙烯腈(PAN)和三聚氰胺为原料,通过静电纺丝法制备了三聚氰胺改性聚丙烯腈纳米纤维前驱体,经预氧化、碳化后得到交联的多孔纳米碳纤维.采用红外光谱(FTIR)仪、热重分析(TGA)仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪、拉曼光谱仪和比表面积分析仪等对前驱体及纤维进行了表征.结果表明,经过三聚氰胺改性的聚丙烯腈纳米纤维前驱体在碳化后有效地交联,形成含有微孔、介孔和大孔多级的合理孔道结构,氮掺杂量高达14.3%,纤维直径大幅缩减,平均直径仅约89 nm.电化学测试结果表明,交联多孔纳米碳纤维电极在0.05 A·g-1电流密度下未经活化时的质量比电容值高达194 F·g-1(0.05 A·g-1),在2 A·g-1的电流密度下经过1000次循环充放电后的比电容仍然保持99.2%,表现出优异的电化学特性.  相似文献   

14.
Antipodal twisted helical ribbons with lamellar bilayer structure were obtained by self-assembly of chiral amphiphilic molecules in water and water/ethanol. The handedness inversion of the molecular arrangement in these antipodal helical ribbons was investigated by using chiroptical spectroscopy and molecular probes in their antipodal mesoporous silica assemblies synthesized through pairing interaction between the head group of the chiral amphiphilic molecules and a co-structure-directing agent. The supramolecular chirality is imprinted in the pore surface through the organic group of the co-structure-directing agent. The mirror-image diffuse-reflectance circular dichroism spectra of the conjugated discotic probing molecule introduced into their supramolecular chiral imprinted mesoporous silica demonstrated the origin of inverse chirality from the antipodal helical stacking of the molecules.  相似文献   

15.
Resorcinol-formaldehyde aerogels and carbon aerogels of different mesoporosities have been used as templates for preparing bimodal zeolites of mesopores. Samples were thoroughly characterized with X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, N(2) adsorption at 77 K, as well as FT-IR spectroscopy and (29)Si nuclear magnetic resonance spectroscopy. The mesoporous ZSM-5 zeolites have additional mesopores of 9-25 nm in widths and 0.07-0.2 cm(3)/g in volumes, besides their perfect inherent micropores. Experimental results show the mesoporous systems of the finally obtained zeolites can be influenced by proper preparation of resorcinol-formaldehyde aerogels and carbon aerogels through solution chemistry. Consequently, zeolites of tunable mesoporosities can be prepared with this unique methodology.  相似文献   

16.
1992年Kresge等科学工作者首次报道了一种新颖的介孔二氧化硅材料,介孔二氧化硅的合成及其性能表征引起了广泛的研究兴趣[1,2]。这种材料由于具有高比表面积(1000~1400m2·g-1)、孔道排列有序、孔径分布窄并可以在2~10nm范围内可调等优点,所以有望用于催化与吸附、化学传感、纳  相似文献   

17.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   

18.
A chiral cationic thickener l-ValPyBr, which was able to enhance the viscosity of water and form loosely physical gel in mixtures of water and alcohols, was synthesized. Sol-gel polymerization of TEOS was carried out in mixtures of water and alcohols under basic conditions using the self-assemblies of l-ValPyBr as template. The left-handed twisted mesoporous silica nanoribbons, which were constructed by nanotubes in monolayer, were obtained, and they tended to self-assemble into bundle structure. Stirring under the preparation process played an important role in the formation of this bundle structure. The obtained silica nanoribbons were uniform in width, thickness, and helical pitch without combining amorphous particles. The helical pitch and pore size of the mesoporous silica nanoribbons sensitively depended on the volume ratio of alcohols to water in the reaction mixtures. With increasing volume ratio of alcohols to water in the reaction mixture, the morphologies of the obtained silica changed from left-handed twisted ribbon to coiled ribbon, then to tubular structure. A compound l-ValPyPF6, structurally related to thickener l-ValPyBr, was able to form physical gel in ethanol, THF, acetonitrile, and the mixtures of ethanol and water. Left-handed multiple helical mesoporous silica nanofibers were prepared by using the self-assemblies of l-ValPyPF6 as template in mixtures of water and alcohols under basic conditions. By controlling both the volume ratio of ethanol to water and the weight ratio of l-ValPyPF6 to TEOS, two- or three-dimensional pore-architecture constructed by porous chiral nanotubes was obtained.  相似文献   

19.
张波  刘佳  刘晓晨  李德军 《电化学》2019,25(6):749-756
为了探索碳载体材料结构对于硫的电化学性能的影响,本文通过高温固相法将升华硫与石墨烯、导电炭黑、多孔碳等三种不同结构的碳载体材料复合,制备得到硫含量相近的三种硫碳复合材料. 通过电镜扫描、低温氮吸附、X射线衍射等方法,对所制备的硫碳复合材料的结构和硫的分布状态进行了表征和分析. 并进一步对三种复合材料进行了电化学性能测试,结果表明,硫负载到多孔碳中的电化学性能最好,其初始放电比容量达到了1623.2 mA·h·g-1,循环100周之后,其放电比容量仍能保持在845 mA·h·g-1. 这主要因为相比于石墨烯的层状结构和导电炭黑的链状结构,多孔碳材料中含有大量的微孔和介孔,负载硫后,与硫分子的接触面积大,活性物质的利用率高,从而提高了硫的电化学性能.  相似文献   

20.
Mesoporous zeolite silicalite-1 and Al-ZSM-5 with intracrystalline mesopores were synthesized with polyelectrolyte-surfactant complex as the template. Complex colloids were first formed by self-assembly of the anionic polymer poly(acrylic acid) (PAA) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) in basic solution. During the synthesis procedure, upon the addition of the silica source, microporous template (tetrapropylammonium hydroxide), and NaCl, these PAA/CTA complex colloids underwent dissociation and gave rise to the formation of hollow silica spheres with mesoporous shells templated by CTAB micelles and PAA domains as the core. Under hydrothermal treatment, the hollow silica spheres gradually merged together to form larger particles with the PAA domains embedded as the space occupant, which acted as a template for intracrystalline mesopores during the crystallization of the zeolite framework. Amphiphilic organosilane was used to enhance the connection between the PAA domain and the silica phase during the synthesis. After calcination, single crystal-like zeolite particles with intracrystalline mesopores of about 5-20 nm were obtained, as characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N(2) adsorption measurements. With the addition of an aluminum source in the synthesis, mesoporous zeolite Al-ZSM-5 with intracrystalline mesopores was also synthesized, and enhanced catalytic property was observed with mesoporous Al-ZSM-5 in acetalization of cyclohexanone with methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号