首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.  相似文献   

2.
Laser flash photolysis of supported gold nanoparticles exciting at the surface plasmon band (532 nm) has allowed in the case of Au/CeO(2) and Au/OH-npD (OH-npD: Fenton-treated diamond nanoparticles) detection of transients decaying in the microsecond time scale that have been attributed as indicating photoinduced electron ejection from gold based on N(2)O quenching and the observation of the generation of methyl viologen radical cations. This photochemical behavior has led us to hypothesize that there could be assistance to the catalytic activity of these materials by irradiation in those cases wherein the mechanism involves electron transfer to or from a substrate to the gold. This hypothesis has been confirmed by observing that the catalytic activity of Au/OH-npD for the Fenton degradation of phenol with hydrogen peroxide can be increased over 1 order of magnitude by irradiation at 532 nm. Moreover, there is a linear relationship between the initial reaction rate and the incident photon flux. This photoenhancement allows promoting Fenton activity at pH 8 in which the catalytic activity of Au/OH-npD is negligible. The same photo enhancement activity for the Fenton degradation of phenol was observed for other supported gold catalysts including those that do not exhibit microsecond transients in the nanosecond laser flash photolysis (Au/TiO(2) and Au/SiO(2)) due to their lifetime shorter than microseconds. It is proposed that the photo enhancement should be a general phenomenon in gold catalysis for those reaction mechanisms involving positive and/or negative gold species.  相似文献   

3.
This paper deals with the textural, microstructural and interfacial properties of Au/TiO(2) nanocomposites, in relation to their photocatalytic activity for splitting of water. TiO(2) samples of two different morphologies were employed for dispersing different cocatalysts, such as: Au, Pt, Ag or Cu, for the sake of comparison. The samples were characterized using powder XRD, XPS, UV-visible, thermoluminescence, SEM, HRTEM and SAED techniques. Compared to other metal/TiO(2) photocatalysts, Au/TiO(2) with an optimum gold loading of 1 wt% was found to exhibit considerably higher activity for visible light induced production of H(2) from splitting water in the presence of methanol. Further, the sol-gel prepared TiO(2) (s.TiO(2)), having spherical grains of 10-15 nm size, displayed better photoactivity than a Degussa P25 catalyst. The electron microscopy investigations on s.TiO(2) revealed significant heterogeneity in grain morphology of individual TiO(2) particles, exposure of the lattice planes, metal dispersion, and the interfacial metal/TiO(2) contacts. The gold particles were found to be in a better dispersed state. O(2) TPD experiments revealed that the gold nanoparticles and Au/TiO(2) interfaces may serve as distinct binding sites for adsorbate molecules. At the same time, our thermoluminescence measurements provide an insight into Au-induced new defect states that may facilitate the semiconductor-to-metal charge transfer transition. In conclusion, the superior photocatalytic activity of Au/TiO(2) may relate to the grain morphology of TiO(2), dispersion of gold particles, and the peculiar architecture of metal/oxide heterojunctions; giving rise in turn to augmented adsorption of reactant molecules and their interaction with the photo-generated e(-)/h(+) pair. The role played by methanol as a sacrificial reagent in photocatalytic splitting of water is discussed.  相似文献   

4.
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.  相似文献   

5.
Bulk gold has long been regarded as a noble metal, having very low chemical and catalytic activity. However, metal oxide-supported gold particles, particularly those that are less than 5 nm in diameter, have been found to have remarkable catalytic properties. In this study we show that impinging gas-phase CO molecules react readily with oxygen adatoms preadsorbed on Au/TiO(2)(110) to produce CO(2) even under conditions in which the sample is cryogenically cooled. Gold particle size seems to have little effect on the CO oxidation reaction when oxygen adatoms are preadsorbed. We also show that as the oxygen adatom coverage increases, the rate of CO oxidation decreases on Au/TiO(2) at cryogenic temperatures.  相似文献   

6.
Gold nanoparticles of 10–24 and 5–8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid‐treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single‐crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n‐doped ZnO serves as the e? donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of α,β‐unsaturated carbonyl compound 3,7‐dimethyl‐2,6‐octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50 % at a citral conversion of 20 %) due to the presence of single‐crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.  相似文献   

7.
自Haruta与Hutchings于上世纪八十年代末发现金纳米催化剂优异的反应活性以来,科研人员对金催化的应用领域进行了广泛而深入地研究.对金催化科学和应用领域的研究一直在进行.大量的研究表明,金催化剂在各种选择性氧化反应中具有优异的催化性能(高活性和高选择性).然而,在催化加氢反应中,尽管金催化剂相比于铂族金属显示出优越的选择性,但是由于金催化剂选择性加氢反应的活性较差,使其在选择性催化加氢反应中的应用受到了极大的限制.研究表明,金催化剂较弱的活化氢气能力是其催化加氢反应活性低的主要原因.研究发现,氢气活化的活性中心可能是界面、负价金、低配位的金原子等.金催化剂具有明显的载体效应,金属-载体之间的相互作用能够显著地改变金催化剂的催化性能.Tauster等研究发现,铂族金属与还原性载体之间存在强相互作用,能够引发载体包覆金属表面,并且使得电子从载体向金属迁移,导致金属带负电.受金属-载体强相互作用(SMSI)效应的启发,本文探究了Au/TiO2催化剂中SMSI对金催化剂加氢性能的影响.在H2或O2气氛下高温焙烧Au/TiO2,获得一系列金催化剂(Au/TiO2-TA,T为焙烧温度(oC):300、400、500和600;A为气氛:H2或O2).对比在3-硝基苯乙烯(3-NS)选择性加氢反应中的活性发现,Au/TiO2-500H的TOF值是Au/TiO2-500O的3.3倍;动力学测试表明,Au/TiO2-500H和Au/TiO2-500O的反应表观活化能分别为79.5和105.1 kJ/mol.这表明两类催化剂催化活性中心的结构存在差异.X射线光电子能谱测试结果表明,Au/TiO2-H样品中Au带部分负电,而Au/TiO2-O中Au显示为金属态.HAADF-STEM和EELS显示,Au/TiO2-H中Au NPs的表面有TiOx物种,增加了Au-TiO2的界面.EPR结果表明,Au/TiO2-H中存在表面Ti3+物种,而Au/TiO2-O样品中则没有.为确认加氢反应的活性中心到底是界面还是负价金物种,本文探究了不同温度下氢气处理的Au/TiO2的结构与性能的关系,发现Au/TiO2-300H/400H/500H催化剂都显示出较好的催化3-NS加氢活性,而Au/TiO2-600H虽然具有更多的负价金物种,但是3-NS选择性加氢反应的活性反而降低,因此,负价金不是活性中心.这是因为不同温度处理的Au/TiO2-H样品中,SMSI的强弱不同,在300、400、500 oC下,SMSI能够增加Au-TiO2的界面长度,从而增强了3-NS加氢反应的活性;而温度达到600 oC,SMSI效应太强,Au NPs被包覆更密实,导致Au/TiO2-600H的3-NS选择性加氢反应的活性下降.密度泛函理论计算表明,Au/TiO2-H样品具有更低的H2解离活化能以及氢转移活化能.氢氘交换反应也进一步验证了SMSI有利于H2的活化.  相似文献   

8.
TiO(2)-supported gold nanoparticles exhibit surprising catalytic activity for oxidation reactions compared to noble bulk gold which is inactive. The catalytic activity is localized at the perimeter of the Au nanoparticles where Au atoms are atomically adjacent to the TiO(2) support. At these dual-catalytic sites an oxygen molecule is efficiently activated through chemical bonding to both Au and Ti(4+) sites. A significant inhibition by a factor of 22 in the CO oxidation reaction rate is observed at 120 K when the Au is preoxidized, caused by the oxygen-induced positive charge produced on the perimeter Au atoms. Theoretical calculations indicate that induced positive charge occurs in the Au atoms which are adjacent to chemisorbed oxygen atoms, almost doubling the activation energy for CO oxidation at the dual-catalytic sites in agreement with experiments. This is an example of self-inhibition in catalysis by a reactant species.  相似文献   

9.
In this work, we present a detailed study concerning the evaluation of the metal-support interaction in high activity gold catalysts for CO oxidation. Using the colloidal deposition method, model catalysts were prepared, which allow the isolation of the effect of the support on the catalytic activity. Prefabricated gold particles were thus deposited on different support materials. Since the deposition process did not change the particle sizes of the gold particles, only the influence of the support could be studied. TiO2, Al2O3, ZrO2, and ZnO were used as support materials. Catalytic tests and high resolution transmission electron microscopy clearly show that the support contributes to the activity. However, our results are not in line with the distinction between active and passive supports based on the semiconducting properties of the oxidic material. The most active catalysts were obtained with TiO2 and Al2O3, while ZnO and ZrO2 gave substantially less active catalysts. Furthermore, the effect of other important parameters on the catalytic activity (i.e., particles size distribution, calcination temperature, and aging time for a Au/TiO2 catalyst) has also been studied. Using this preparation route, the catalysts show high-temperature stability, size dependent activity, and a very good long-term stability.  相似文献   

10.
金纳米粒子的阳光光化学合成和晶种媒介生长   总被引:3,自引:1,他引:3  
在柠檬酸盐-HAuCl4溶液体系中, 于高原太阳紫外线辐射下光化学合成了分散良好、尺寸分布窄的胶体金纳米粒子. 研究了溶液的酸度和太阳辐射条件对Au(Ⅲ)离子光化学还原反应速率和形成金纳米粒子尺寸的影响; 采用晶种媒介生长技术, 通过改变Au(0)/Au(Ⅲ)比合成了平均直径为4.9~9.7 nm的球形金粒子. 根据紫外-可见吸收光谱和透射电子显微镜的表征和分析, 讨论了光化学反应中自由基反应、金纳米粒子成核和生长机理.  相似文献   

11.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

12.
以天然不饱和脂肪酸共轭亚油酸(CLA)为绿色单体, 通过简单的分子自组装和可控自交联反应制备聚共轭亚油酸(PCLA)聚集体. 透射电子显微镜(TEM)结果显示, PCLA聚集体的形貌呈现独特网状结构, 其联结单元为来自于CLA胶束的膨大颗粒. 采用氯金酸在极性聚合物表面原位还原, 2 d后在网状PCLA基底上制备得到以CLA胶束为核(20 nm)的网状纳米金结构, 而且网状PCLA的原位还原作用与模板作用相结合是获得PCLA基网状纳米金的充分必要条件. 与普通球形胶态金纳米颗粒[(5±1) nm]相比, PCLA基网状纳米金对苯硫酚具有更好的表面增强拉曼散射(SERS)效应, 对对硝基苯酚具有更好的催化还原效果.  相似文献   

13.
用沉积沉淀法制备了Au-CuO/TiO2催化剂和Au/TiO2催化剂,考察了沉淀温度、沉淀pH、焙烧温度和Cu/Au摩尔比等制备工艺条件对Au-CuO/TiO2催化剂性能的影响,确定了适宜的催化剂制备工艺条件.结果表明,Au-CuO/TiO2催化剂对CO2中微量H2的脱除具有较好的活性和稳定性.还考察了还原和H2S中毒处理先后的顺序对催化剂H2脱除活性的影响.结果表明,Au/TiO2催化剂基本上不受处理顺序的影响,而H2S处理顺序对Au-CuO/TiO2催化剂的性能有较为明显的影响,这说明还原后的Au-CuO/TiO2催化剂形成了Au-Cu合金。  相似文献   

14.
Catalytic activity of gold-platinum, gold-palladium, and platinum-palladium dendrimer nanocomposites for scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was investigated. The gold-platinum and gold-palladium dendrimer nanocomposites were prepared via simultaneous reduction by sodium borohydride in the presence of poly(amidoamine) (PAMAM) dendrimers with amine or carboxyl terminal groups. The particles were not mixtures of monometallic particles but alloyed bimetallic particles. Bimetallic particles exhibited higher catalytic activity than monometallic ones.  相似文献   

15.
采用浸渍法和沉积-沉淀法制备了四种不同的Au/Al2O3催化剂,测定了它们在氢气还原前后及催化反应后的金含量及比表面积,结果表明,制备方法明显影响催化剂的金含量,应用X-光粉末衍射技术研究了这些催化剂经还原处理及反应后的物相变化,金以Au^0物相存在,没有发现氧化态的金物相,考察了该催化剂在CH4/CO2重整反应中的催化活性,发现金催化剂的活性取决于金粒子的大小,浸渍法制备的金催化剂具有较大的金晶粒尺寸,催化活性低,沉积-沉淀法制备的金催化剂金晶粒尺寸较小,催化活性较高,以尿素为沉淀剂制备的催化剂给出1073K时的CH4和CO2转化率分别为8.1%和17.6%,高温反应不仅导致金晶粒的聚集,而且存在明显的金流失现象。  相似文献   

16.
Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with <5 nm diameter located at the interface of anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.  相似文献   

17.
The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.  相似文献   

18.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe2O3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe2O3(S))相比,氧化铁纳米棒(α-Fe2O3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe2O3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明,Au/α-Fe2O3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现,Au/α-Fe2O3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe2O3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明,Au/α-Fe2O3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

19.
Nanosized anatase (< or = 10 nm), rutile (< or = 10 nm), and brookite (approximately 70 nm) titania particles have been successfully synthesized via sonication and hydrothermal methods. Gold was deposited with high dispersion onto the surfaces of anatase, rutile, brookite, and commercial titania (P25) supports through a deposition-precipitation (D-P) process. All catalysts were exposed to an identical sequence of treatment and measurements of catalytic CO oxidation activity. The as-synthesized catalysts have high activity with concomitant Au reduction upon exposure to the reactant stream. Mild reduction at 423 K produces comparably high activity catalysts for every support. Deactivation of the four catalysts was observed following a sequence of treatments at temperatures up to 573 K. The brookite-supported gold catalyst sustains the highest catalytic activity after all treatments. XRD and TEM results indicate that the gold particles supported on brookite are smaller than those on the other supports following the reaction and pretreatment sequences.  相似文献   

20.
利用沉积-沉淀法和溶液相还原法制备了系列金催化剂,以氧气氧化乙二醛合成乙醛酸为探针反应,进行了反应条件的优化,并通过对催化剂进行XRD、AAS、UV-Vis和XPS表征,分析了影响催化剂活性的因素.结果显示:与沉积-沉淀法相比,采用溶液相还原法制备的催化剂Au/ZrO2(L),金的实际负载量较高,表现出较高的催化活性,当溶液pH为7.7,反应温度为323 K时,乙醛酸收率达到6.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号