首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Let \((R,\mathfrak {m})\) be a Noetherian local ring, I be an ideal of R, and M be a finitely generated R-module such that \({\text {H}}_I^t(M)\) is Artinian and I-cofinite, where \(t={\text {cd}}\,(I,M)\). In this paper, we give some equivalent conditions for the property
$$\begin{aligned} {\text {Ann}}\,_R\left( 0:_{{\text {H}}_I^t (M)} \mathfrak {p}\right) =\mathfrak {p}~\text {for all prime ideals }~ \mathfrak {p}\supseteq {\text {Ann}}\,_R{\text {H}}_I^t(M).(*) \end{aligned}$$
Also, we show that if \({\text {H}}_I^t(M)\) satisfies the property \((*)\), then \({\text {H}}_I^t(M)\cong {\text {H}}_{\mathfrak {m}}^t(M/N)\) for some submodule N of M with \({\text {dim}}\,(M/N)=t\).
  相似文献   

2.
Suppose that k is a non-negative integer and a bipartite multigraph G is the union of
$$\begin{aligned} N=\left\lfloor \frac{k+2}{k+1}n\right\rfloor -(k+1) \end{aligned}$$
matchings \(M_1,\dots ,M_N\), each of size n. We show that G has a rainbow matching of size \(n-k\), i.e. a matching of size \(n-k\) with all edges coming from different \(M_i\)’s. Several choices of the parameter k relate to known results and conjectures.
  相似文献   

3.
Consider the following prescribed scalar curvature problem involving the fractional Laplacian with critical exponent:
$$\begin{aligned} \left\{ \begin{array}{ll}(-\Delta )^{\sigma }u=K(y)u^{\frac{N+2\sigma }{N-2\sigma }} \text { in }~ {\mathbb {R}}^{N},\\ ~u>0, \quad y\in {\mathbb {R}}^{N}.\end{array}\right. \end{aligned}$$
(0.1)
For \(N\ge 4\) and \(\sigma \in (\frac{1}{2}, 1),\) we prove a local uniqueness result for bubbling solutions of (0.1). Such a result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y).
  相似文献   

4.
The so-called generalized associativity functional equation
$$\begin{aligned} G(J(x,y),z) = H(x,K(y,z)) \end{aligned}$$
has been investigated under various assumptions, for instance when the unknown functions G, H, J, and K are real, continuous, and strictly monotonic in each variable. In this note we investigate the following related problem: given the functions J and K, find every function F that can be written in the form
$$\begin{aligned} F(x,y,z) = G(J(x,y),z) = H(x,K(y,z)) \end{aligned}$$
for some functions G and H. We show how this problem can be solved when any of the inner functions J and K has the same range as one of its sections.
  相似文献   

5.
We study the Eisenstein series and constant term functors in the framework of geometric theory of automorphic functions. Our main result says that for a parabolic \(P\subset G\) with Levi quotient M, the !-constant term functor
$$\begin{aligned}{\text {CT}}_!:{\text {D-mod}}({\text {Bun}}_G)\rightarrow {\text {D-mod}}({\text {Bun}}_M)\end{aligned}$$
is canonically isomorphic to the *-constant term functor
$$\begin{aligned} {\text {CT}}^-_*:{\text {D-mod}}({\text {Bun}}_G)\rightarrow {\text {D-mod}}({\text {Bun}}_M), \end{aligned}$$
taken with respect to the opposite parabolic \(P^-\).
  相似文献   

6.
Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth \(g,r = \left\lfloor {\frac{{g - 1}}{2}} \right\rfloor \). For any edge uvE(G), if
$${d_G}\left( u \right) + {d_G}\left( v \right) > \frac{{2v\left( G \right) - 2\left( {k + 1} \right)\left( {g - 2r} \right)}}{{\left( {k + 1} \right)\left( {{2^r} - 1} \right)\left( {g - 2r} \right)}} + 2\left( {g - 2r - 1} \right),$$
then G is up-embeddable. Furthermore, similar results for 3-edge connected simple graphs are also obtained.
  相似文献   

7.
We consider the following fractional elliptic problem:
$$\begin{aligned} (P)\left\{ \begin{array}{ll} (-\Delta )^s u = f(u) H(u-\mu )&{} \quad \text{ in } \ \Omega ,\\ u =0 &{}\quad \text{ on } \ \mathbb{{R}}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \((-\Delta )^s, s\in (0,1)\) is the fractional Laplacian, \(\Omega \) is a bounded domain of \(\mathbb{{R}}^n,(n\ge 2s)\) with smooth boundary \(\partial \Omega ,\) H is the Heaviside step function, f is a given function and \(\mu \) is a positive real parameter. The problem (P) can be considered as simplified version of some models arising in different contexts. We employ variational techniques to study the existence and multiplicity of positive solutions of problem (P).
  相似文献   

8.
We consider the existence of single and multi-peak solutions of the following nonlinear elliptic Neumann problem
$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\lambda ^{2} u&=Q(x)|u|^{p-2}u \qquad&\text {in} ~~~~\mathbb {R}^{N}_{+}, \\ \frac{\partial u }{\partial n}&=f(x,u) \qquad&\text {on}~~\partial \mathbb {R}^{N}_{+}, \end{aligned}\right. \end{aligned}$$
where \(\lambda \) is a large number, \(p\in (2,\frac{2N}{N-2})\) for \(N\ge 3\), f(xu) is subcritical about u and Q is positive and has some non-degenerate critical points in \(\mathbb {R}^{N}_{+}\). For \(\lambda \) large, we can get solutions which have peaks near the non-degenerate critical points of Q.
  相似文献   

9.
The existence of solution of the nonlinear Schrödinger equation
$$\begin{aligned} \begin{array}{lc} -\Delta u + V(x) u = f(x,u),&\end{array} \end{aligned}$$
is stablished in \(\mathbb {R}^N\), where V changes sign and f is an asymptotically linear function at infinity, with V and f non periodic in x. Spectral theory, a classical linking theorem and interaction between translated solutions of the problem at infinity are employed.
  相似文献   

10.
Let \(b_{k}(n)\) denote the number of k-regular partitions of n. In this paper, we prove Ramanujan-type congruences modulo powers of 7 for \(b_{7}(n)\) and \(b_{49}(n)\). For example, for all \(j\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{7}\Bigg (7^{2j-1}n+\frac{3\cdot 7^{2j-1}-1}{4}\Bigg )\equiv 0\pmod {7^{j}} \end{aligned}$$
and
$$\begin{aligned} b_{49}\Big (7^{j}n+7^{j}-2\Big )\equiv 0\pmod {7^{j}}. \end{aligned}$$
  相似文献   

11.
This paper is devoted to a substantial generalization of previous work on the analytic hypoellipticity of sums of squares \(P=\sum _1^4X^2_j\) of real vector fields with real analytic coefficient in three variables. For p(xy) quasi-homogeneous in (xy), consider the vector fields
$$\begin{aligned} X_1 = \frac{\partial }{\partial x}, \quad X_2=-\frac{\partial }{\partial y} + p(x,y)\frac{\partial }{\partial t}, \quad X_3=x^{n_1}\frac{\partial }{\partial t}, \quad X_4=y^{n_2}\frac{\partial }{\partial t}, \end{aligned}$$
\( n_1, n_2 \ne 0\). We show that the operator
$$\begin{aligned} P=\sum _1^4 X_j^2, \end{aligned}$$
well known to be \(C^\infty \)-hypoelliptic, is actually analytic hypoelliptic near the origin in \({\mathcal {R}}^3\).
  相似文献   

12.
We analyse the functional equation
$$\begin{aligned} f(x)+f(y)=\max \{f(xy),f(xy^{-1})\} \end{aligned}$$
for a function \(f:G\rightarrow \mathbb R\) where G is a group. Without further assumption it characterises the absolute value of additive functions. In addition \(\{z\in G\mid f(z)=0\}\) is a normal subgroup of G with abelian factor group.
  相似文献   

13.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

14.
Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±1 (mod 5), then p?\({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a ≥ 1. In 2010, in particular, Kilic generalized the Fibonomial coefficients for
$${\left[ {\begin{array}{*{20}{c}} n \\ k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}$$
. In this note, we generalize Marques, Sellers and Trojovský result to prove, in particular, that if p ≡ ±1 (mod 5), then \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_{F,m}} \equiv 1\) (mod p), for all a ≥ 0 and m ≥ 1.
  相似文献   

15.
We study, in the semiclassical limit, the singularly perturbed nonlinear Schrödinger equations
$$\begin{aligned} L^{\hbar }_{A,V} u = f(|u|^2)u \quad \hbox {in}\quad \mathbb {R}^N \end{aligned}$$
(0.1)
where \(N \ge 3\), \(L^{\hbar }_{A,V}\) is the Schrödinger operator with a magnetic field having source in a \(C^1\) vector potential A and a scalar continuous (electric) potential V defined by
$$\begin{aligned} L^{\hbar }_{A,V}= -\hbar ^2 \Delta -\frac{2\hbar }{i} A \cdot \nabla + |A|^2- \frac{\hbar }{i}\mathrm{div}A + V(x). \end{aligned}$$
(0.2)
Here, f is a nonlinear term which satisfies the so-called Berestycki-Lions conditions. We assume that there exists a bounded domain \(\Omega \subset \mathbb {R}^N\) such that
$$\begin{aligned} m_0 \equiv \inf _{x \in \Omega } V(x) < \inf _{x \in \partial \Omega } V(x) \end{aligned}$$
and we set \(K = \{ x \in \Omega \ | \ V(x) = m_0\}\). For \(\hbar >0\) small we prove the existence of at least \({\mathrm{cupl}}(K) + 1\) geometrically distinct, complex-valued solutions to (0.1) whose moduli concentrate around K as \(\hbar \rightarrow 0\).
  相似文献   

16.
An idempotent operator E in a Hilbert space \({\mathcal {H}}\) \((E^2=1)\) is written as a \(2\times 2\) matrix in terms of the orthogonal decomposition
$$\begin{aligned} {\mathcal {H}}=R(E)\oplus R(E)^\perp \end{aligned}$$
(R(E) is the range of E) as
$$\begin{aligned} E=\left( \begin{array}{l@{\quad }l} 1_{R(E)} &{} E_{1,2} \\ 0 &{} 0 \end{array} \right) . \end{aligned}$$
We study the sets of idempotents that one obtains when \(E_{1,2}:R(E)^\perp \rightarrow R(E)\) is a special type of operator: compact, Fredholm and injective with dense range, among others.
  相似文献   

17.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

18.
We prove the existence of infinitely many solutions for
$$\begin{aligned} - \Delta u + V(x) u = f(u) \quad \text { in } \mathbb {R}^N, \quad u \in H^1(\mathbb {R}^N), \end{aligned}$$
where V(x) satisfies \(\lim _{|x| \rightarrow \infty } V(x) = V_\infty >0\) and some conditions. We require conditions on f(u) only around 0 and at \(\infty \).
  相似文献   

19.
In this note we consider Wente's type inequality on the Lorentz-Sobolev space.If▽f∈L~p1,q1(R~n),G ∈ L~(p2,q2)(R~n) and div G≡0 in the sense of distribution where(1/p1)+(1/P2)=(1/q1)+(1/q2)=1,1P1,P2∞,it is known that G·▽f belongs to the Hardy space H~1 and furthermore‖G·▽f‖H~1≤C‖▽f‖L~(p1,q1)(R~2)‖G‖L~(p2,q2)(R~2).Reader can see[9]Section 4.Here we give a new proof of this result.Our proof depends on an estimate of a maximal operator on the Lorentz space which is of some independent interest.Finally,we use this inequality to get a generalisation of Bethuel's inequality.  相似文献   

20.
In this paper we study a Dirichlet-to-Neumann operator with respect to a second order elliptic operator with measurable coefficients, including first order terms, namely, the operator on \(L^2(\partial \Omega )\) given by \(\varphi \mapsto \partial _{\nu }u\) where u is a weak solution of
$$\begin{aligned} \left\{ \begin{aligned}&-\mathrm{div}\, (a\nabla u) +b\cdot \nabla u -\mathrm{div}\, (cu)+du =\lambda u \ \ \text {on}\ \Omega ,\\&u|_{\partial \Omega } =\varphi . \end{aligned} \right. \end{aligned}$$
Under suitable assumptions on the matrix-valued function a, on the vector fields b and c, and on the function d, we investigate positivity, sub-Markovianity, irreducibility and domination properties of the associated Dirichlet-to-Neumann semigroups.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号