首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
Flowerlike cupped-end ZnO microrod bundles have been hydrothermally synthesized from precursor ZnCl2(N2H4)2 in sheet shape at 140 degrees C for 12 h; under the same conditions using the same precursor in rod shape, uniform ZnO nanorods were obtained. XRD pattern indicated the sample is ZnO with hexagonal cell contants a = 3.251 A and c = 5.206 A. FE-SEM and TEM show the formation process of the ZnO sample. HRTEM revealed that the flowerlike cupped-end ZnO microrod bundles grow along the [101] axis. The UV emission peak at approximately 396 nm and the blue band emission peak at approximately 469 nm were observed by PL spectra. A possible formation mechanism was proposed.  相似文献   

2.
A facile and reversible phase‐transfer protocol for luminescent ZnO quantum dots (QDs) between methanol and hexane is presented. Oleylamine together with acetic acid trigger this reversible phase‐transfer process, during which the structure and optical properties of the ZnO QDs are well‐protected. ZnO QDs with a diameter of approximately 5 nm emit yellow light at 525 nm, while those with a diameter of approximately 4 nm emit green light at 510 nm. The positions of the emission peaks remain unchanged during the presented phase‐transfer process. The Pearson’s hard and soft (Lewis) acid and base principle, together with the principle that similar substances are more likely to be dissolved by each other, describes the current reversible phase‐transfer process. Herein, we circumvent the time‐consuming work required to synthesize ZnO QDs in different environments, making it possible to combine the advantages of ZnO QDs dispersed in polar and nonpolar solvents.  相似文献   

3.
In situ growth of ZnO nanobelt arrays from and on zinc substrates (foils and microparticles) has been accomplished by controlled thermal oxidation in the presence of oxygen. The nanobelts grow approximately perpendicular to the Zn substrate surface along the 110 direction of ZnO, which has a thickness of approximately 3-4 nm, a width tapering from about 50 to 300 nm, and a length of approximately 10-20 mum. On the basis of the structural analysis and kinetic studies, a tip-growth mechanism is proposed, which underlines the transport of Zn from the substrate to the growing tip. The ratio of UV to green photoluminescent emissions of the as-synthesized ZnO nanobelt arrays could be controlled by varying the reaction conditions. Sharp UV stimulated emission peak is also observed at moderate threshold excitation intensity ( approximately 0.7 mJ/cm(2)) showing the high quality of the ZnO nanobelts. The ZnO nanobelts array has also been tested for sensing NH(3) gas, and high sensitivity, reversibility, and rapid response have been demonstrated.  相似文献   

4.
ZnO nanostructures, with a rich collection of morphologies and spatial organizations useful in a variety of important applications, have been synthesized mainly via solution- and gas-phase approaches. Here we report a simple calcination to convert self-assembled nanosheets of hydrated ZnO, each about 50 nm thick, to ordered ZnO nanorods (approximately 200 nm in diameter and approximately 4 microm in length) on glass substrates or on ZnO microcrystals through a quick calcination at 400 degrees C in air. This work is among the first using a pure solid-state transformation to convert one ordered precursory nanostructure to another with different morphology and spatial organization. Both the ordered nanorods and the self-assembled nanosheets could be useful in important applications including catalysis, sensing, gas storage, and drug delivery.  相似文献   

5.
Nano and micro ZnO rods and arrays have been synthesized by a simple thermal evaporation approach on a cylindrical shape substrate. Most of the synthesized ZnO products are single crystalline with a hexagonal structure and grow along the [0001] direction. Individual protrusive ZnO rods and well-aligned arrays are two typical products in our work. The individual protrusive ZnO rods have diameters of 25 nm approximately 2.1 microm and lengths from several hundred nanometers to 40 microm, while in the well-aligned arrays, the diameter and length of each ZnO rod range from 60 nm to 1.2 microm and from 4 microm to 6 microm, respectively. The heating temperature and deposition position are two key points to control the diameters of the rods. The growth mechanism is discussed and proposed. The perfect crystalline ZnO rods with different scales from nanometer to micrometer are good models for the investigation of the size effect of physical and chemical properties of one-dimensional material.  相似文献   

6.
The emission properties of nanocrystalline ZnO particles prepared following an organometallic synthetic method are investigated. Spherical particles and nanorods are studied. The shape of the particles and the ligands used are shown to influence the luminescence properties in the visible domain. Two different emissions are observed at 440 nm (approximately 2.82 eV) and at 580 nm (approximately 2.14 eV) that are associated with the presence of surface defects on the particles. The first emission corresponds to the well-known yellow emission located at 580 nm (approximately 2.14 eV) with a lifetime of 1850 ns for 4.0 nm size ZnO nanoparticles. The second emission at 440 nm (approximately 2.82 eV) is observed when amine functions are present. This strong blue emission is associated with an excitation energy less than that associated with the yellow emission displaying a lifetime of nine nanoseconds. A possible hole trapping effect by the amine groups on the surface of the ZnO particles is discussed as the origin of this emission. The modification of the intensities between the two visible emissions for different particle shapes is proposed to be related to a specific location of the amine ligands on the surface of the particles.  相似文献   

7.
Starting from a mixture of Zn and BiI3, we grew nanowires and nanoplates on an oxidized Si substrate at relatively low temperatures of 250 and 300 degrees C, respectively. The ZnO nanowires had diameters of approximately 40 nm and grew along the [110] direction rather than the conventional [0001] direction. The nanoplates had thicknesses of approximately 40 nm and lateral dimensions of 3-4 microm. The growth of both the nanowires and nanoplates is dominated by the synergy of vapor-liquid-solid (VLS) and direction conducting. Analysis of photoluminescence spectra suggested that the nanoplates contain more oxygen vacancies and have higher surface-to-volume ratios than the nanowires. The present results clearly demonstrate that the shapes of ZnO nanostructures formed by using BiI3 can be controlled by varying the temperature in the range 250-300 degrees C.  相似文献   

8.
A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the 0001 direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.  相似文献   

9.
We demonstrate structural and room temperature magnetic properties of Fe doped ZnO nanofibers (NFs) obtained by electrospinning followed by calcination. The observed NFs, formed from crystalographically oriented, approximately 4.5?nm particles conglomerates, were approximately 200?nm in diameter. The reported synthesis of room temperature ferromagnetic Fe doped ZnO NFs is both facile and economical, and is therefore suggested as a generic method of fabricating biocompatible magnetic materials. The major substrates selected for the NFs synthesis (Zn, Fe) comprised of relatively low toxicity materials. Incorporating 10% Fe into ZnO does not modify the wurtzite crystal structure of the host material. No evidence of impurity phase was detected by either X-ray or electron diffraction. Magnetometry studies and Magnetic Force Microscopy imaging reveal a local ferromagnetic order that persists up to room temperature. We suggest that the observed phenomenon is either due to a mechanism mediated by presence of oxygen vacancies and/or is related to iron-rich precipitates.  相似文献   

10.
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of ~40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 ?, c=5.27563 ? and V=47.684 (?)(3)) are found to be greater than that of undoped ZnO (a=3.19993 ?, c=5.22546 ? and V=46.336 (?)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at ~3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to (4)T(1)→(6)A(1) transition of Mn(2+) ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to (55)Mn hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn(2+) ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (χ) have been evaluated.  相似文献   

11.
A rapid, microwave-assisted hydrothermal method has been developed to access ultrafine ZnO hexagonal microrods of about 3-4 μm in length and 200-300 nm in width by using a 1:5 zinc nitrate/urea precursor system. The size and morphology of these ZnO materials can be influenced by subtle changes in precursor concentration, solvent system, and reaction temperature. Optimized conditions involve the use of a 1:3 water/ethylene glycol solvent system and 10 min microwave heating at 150 °C in a dedicated single-mode microwave reactor with internal temperature control. Carefully executed control experiments ensuring identical heating and cooling profiles, stirring rates, and reactor geometries have demonstrated that for these preparations of ZnO microrods no differences between conventional and microwave dielectric heating are observed. The resulting ZnO microrods exhibited the same crystal phase, primary crystallite size, shape, and size distribution regardless of the heating mode. Similar results were obtained for the ultrafast preparation of ZnO nanoparticles with diameters of approximately 20 nm, synthesized by means of a nonaqueous sol-gel process at 200 °C from a Zn(acac)(2) (acac=acetylacetonate) precursor in benzyl alcohol. The specific role of microwave irradiation in enhancing these nanomaterial syntheses can thus be attributed to a purely thermal effect as a result of higher reaction temperatures, more rapid heating, and a better control of process parameters.  相似文献   

12.
Hierarchical ZnO hollow spheres (400–500 nm in diameter) consisting of ZnO nanoparticles with a diameter of approximately 15 nm have been successfully prepared by a facile and rapid sonochemical process. The formation of hierarchical ZnO hollow spheres is attributed to the oriented attachment and subsequent Ostwald ripening process according to time‐dependent experiments. The as‐prepared ZnO hollow spheres are used as a photoanode in dye‐sensitized solar cells and exhibit a highly efficient power conversion efficiency of 4.33 %, with a short‐circuit current density of 9.56 mA cm?2, an open‐circuit voltage of 730 mV, and a fill factor of 0.62 under AM 1.5 G one sun (100 mW cm?2) illumination. Moreover, the photovoltaic performance (4.33 %) using the hierarchical ZnO hollow spheres is 38.8 % better than that of a ZnO nanoparticle photoelectrode (3.12 %), which is mainly attributed to the efficient light scattering for the former.  相似文献   

13.
Large-area ZnO nanorod arrays have been synthesized successfully on a stainless steel grid at a mild growth temperature of around 400 degrees C. The as-grown ZnO nanorods have uniform diameters of about 30-50 nm with approximately 5 nm tips. Patterned growth can be realized by engineering the shape of the grid in the growth. Photoluminescence demonstrates a sharp strong UV peak and a broad green band. The growth method provides a promising way of producing nanorod arrays with good controllability in patterns and morphologies, which will be critical in potential application such as high-efficiency filtering and catalysts.  相似文献   

14.
Zinc oxide quantum rods   总被引:5,自引:0,他引:5  
Nanoscale zinc oxide (ZnO) rods of diameters close to the Bohr-exciton radius ( approximately 2 nm) can be prepared from a simple acetate precursor, resulting in ligand-capped rods of ZnO, highly dispersible in nonpolar solvents. Zinc oxide, ZnO, is a wide band-gap semiconductor with applications in blue/ultraviolet (UV) optoelectronic devices and piezoelectric devices. We observe self-assembly into uniform stacks of nanorods aligned parallel to each other with respect to the long axis, and photoluminescence measurements provide evidence for one-dimensional quantum confinement.  相似文献   

15.
Unusual ZnO microspheres constructed of interconnected sheetlike nanostructures were prepared by the hydrothermal synthesis approach. These microspheres possess high surface areas (28.9 m(2)/g) and are amorphous. Trisodium citrate plays a key role in directing the formation of these microstructures. By increasing the reaction time, these microspheres gradually dissolved to form short hexagonal microrods with stacked nanoplate or nanosheet structure. The microrods were also formed under the influence of trisodium citrate. They are crystalline and show a strong (002) X-ray diffraction peak of wurtzite ZnO structure. Both microsphere and microrod samples show near-band-edge emission at approximately 385 nm, but only the microrod sample exhibits yellow luminescence at approximately 560 nm. Due to their high surface areas, these ZnO microstructures were examined for their ability to photodecompose phenol. The as-prepared samples did not display photocatalytic activity due to possible surface adsorption of solution species. However, microspheres with heat treatment to 300 degrees C can substantially enhance the photodecomposition of phenol under direct sunlight irradiation and still maintain their high surface area nanosheet structure.  相似文献   

16.
A rapid, microwave‐assisted hydrothermal method has been developed to access ultrafine ZnO hexagonal microrods of about 3–4 μm in length and 200–300 nm in width by using a 1:5 zinc nitrate/urea precursor system. The size and morphology of these ZnO materials can be influenced by subtle changes in precursor concentration, solvent system, and reaction temperature. Optimized conditions involve the use of a 1:3 water/ethylene glycol solvent system and 10 min microwave heating at 150 °C in a dedicated single‐mode microwave reactor with internal temperature control. Carefully executed control experiments ensuring identical heating and cooling profiles, stirring rates, and reactor geometries have demonstrated that for these preparations of ZnO microrods no differences between conventional and microwave dielectric heating are observed. The resulting ZnO microrods exhibited the same crystal phase, primary crystallite size, shape, and size distribution regardless of the heating mode. Similar results were obtained for the ultrafast preparation of ZnO nanoparticles with diameters of approximately 20 nm, synthesized by means of a nonaqueous sol–gel process at 200 °C from a Zn(acac)2 (acac=acetylacetonate) precursor in benzyl alcohol. The specific role of microwave irradiation in enhancing these nanomaterial syntheses can thus be attributed to a purely thermal effect as a result of higher reaction temperatures, more rapid heating, and a better control of process parameters.  相似文献   

17.
ZnO and ZnO:Zn powder phosphors were prepared by the polyol-method followed by annealing in air and reducing gas, respectively. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectra (XPS), electron paramagnetic resonance (EPR), and photoluminescence (PL) and cathodoluminescence (CL) spectra, respectively. The results indicate that all samples are in agreement with the hexagonal structure of the ZnO phase and the particle sizes are in the range of 1-2 microm. The PL and CL spectra of ZnO powders annealed at 950 degrees C in air consist of a weak ultraviolet emission band (approximately 390 nm) and a broad emission band centered at about 527 nm, exhibiting yellow emission color to the naked eyes. When the sample was reduced at the temperatures from 500 to 1050 degrees C, the yellow emission decreased gradually and disappeared completely at 800 degrees C, whereas the ultraviolet emission band became the strongest. Above this temperature, the green emission ( approximately 500 nm) appeared and increased with increasing of reducing temperatures. According to the EPR results and spectral analysis, the yellow and green emissions may arise from the transitions of photogenerated electron close to the conduction band to the deeply trapped hole in the single negatively charged interstitial oxygen ion (Oi(-)) and the single ionized oxygen vacancy (V.O) centers, respectively.  相似文献   

18.
均相沉淀法合成纳米ZnO及其光催化性能研究   总被引:36,自引:0,他引:36  
以ZnSO_4、尿素为原料,采用均相沉淀法在90 ℃合成出了纳米ZnO,并就反应 温度、反应时间、反应物浓度及物料配比等条件对产物的影响进行了探讨。XRD物 相分析,产物为六方晶系;TEM形貌观察,粒子基本为球形,平均粒径20 nm;并用 IR,TG-DTA等测试手段对其进行了表征。利用紫外-可见分光光度计测试了光吸收 性能,发现纳米氧化锌对200~380 nm波长范围的光有很强吸收性,在可见光范围 内,也有较强的吸收。利用纳米氧化锌作为光催化剂对有机染料溶液进行了降解实 验,发现在日光照射60 min后,对酸性大红4BE的降解率可达100%。  相似文献   

19.
采用光刻技术制备出图案的锌膜,所得锌膜与纯氧在700℃氧化反应10 min,在锌膜的表面上原位生长出具有图案的锥形ZnO纳米带阵列,实现了ZnO纳米带生长位置的可控生长。锌膜上得到的锥形ZnO纳米带为单晶六方纤锌矿结构,长度在1~4μm,纳米带根部和顶部的宽度分别在300~700 nm和100~300 nm。提出了锥形ZnO纳米带的可能生长机理。在波长为300nm光的激发下,发现了锌膜上锥形ZnO纳米带具有发光峰位于395 nm弱的紫外光发光和510 nm强的蓝绿光发光,它们分别起源于ZnO宽带隙的激子发射以及表面上离子化氧空位中的电子与价带中光激发的空穴之间的复合。  相似文献   

20.
We have demonstrated a simple method for depositing ZnO nanodots on quartz substrates by sparking off different tip shapes at voltages of 2, 4 and 6 kV in air at atmospheric pressure. A comparison was made among the three tip shapes: the sharp tip, the conical tip and the dull tip. The surface morphology was then observed by atomic force microscopy. The mean height of the randomly distributed dots of approximately 8 nm was successfully deposited from the sharp tip at 6 kV. Characterizations by UV–vis spectroscopy and Raman spectroscopy have confirmed the presence of ZnO and the quality improvement by annealing treatments. Moreover, a nucleation mechanism of the nanodot formation is discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号