首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
A sensitive electrochemical molecularly imprinted sensor was developed for the detection of estradiol, by electropolymerization of p-aminothiophenol functionalized gold nanoparticles in the presence of estradiol as template molecule. The extraction of the template leads to the formation of cavities that are able to recognize and bind estradiol with high affinity. The performance of the developed sensor for the detection of estradiol was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as redox probe. The molecularly imprinted sensor exhibits a broad linear range, between 3.6 fM and 3.6 nM and a limit of quantification of 1.09 fM. Compared to the non-imprinted sensor, the imprinted sensor exhibits high affinity for the binding of estradiol. Moreover, selectivity studies, performed towards binding of testosterone, a hormone with similar chemical structure, proved high sensor selectivity. Furthermore, the molecularly imprinted sensor was applied for the analysis of spiked river samples with good recoveries.  相似文献   

2.
A voltammetric paracetamol sensor based on molecularly imprinted polymeric (MIP) micelles was prepared by direct electrodeposition. The MIP micelles were prepared via macromolecule self‐assembly of an amphiphilic photocrosslinkable copolymer using paracetamol as the template molecule. The resultant molecularly imprinted polymeric micelles swelled with increasing pH, and the disassociation of the micelles occurred at pH above approximately 7.4. A robust MIP film with good solvent resistance was formed on the electrode surface by anodic electrodeposition of the MIP micelles and subsequent photocrosslinking, resulting in the fabrication of a MIP electrochemical sensor for detecting paracetamol. The resultant sensor showed good response and selectivity towards paracetamol. In addition, a wide linear range from 0.01 mmol/L to 8 mmol/L and a low detection limit of 1×10?6 mol/L for paracetamol detection was demonstrated based on this sensor. The MIP sensor also showed good stability and reversibility which was applied to determine paracetamol commercial tablets.  相似文献   

3.
基于抗原决定基的胰岛素分子印迹电化学传感器   总被引:1,自引:0,他引:1  
采用抗原决定基法制备了胰岛素电化学分子印迹传感器.以胰岛素C端多肽作为模板分子,定向自组装在Au电极上,以邻苯二胺为功能单体,电化学聚合制备分子印迹聚合膜.以NaOH为洗脱液,洗脱模板分子,形成的与胰岛素C端多肽三维结构相匹配的分子印迹孔穴能特异性识别胰岛素.重吸附胰岛素分子后,以K3[Fe(CN)6]/K4[Fe(CN)6]为探针,通过测量探针在电极表面产生的电流大小实现胰岛素的间接测定.在1.0 × 10-14~5.0 × 10-13 mol/L浓度范围内,传感器的电流响应值与胰岛素浓度呈良好的线性关系,检出限为7.24 × 10-15 mol/L(3σ).此传感器具有较好的选择性和稳定性,并成功用于血清样品中胰岛素的测定.  相似文献   

4.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

5.
《Analytical letters》2012,45(7):1117-1131
A molecularly imprinted electrochemical sensor was fabricated based on a gold electrode modified by chitosan-multiwalled carbon nanotube composite (CS-MWCNTs) multilayer films and gold nanoparticles (AuNPs) for convenient and sensitive determination of oxytetracycline (OTC). The multilayer of CS-MWCNTs composites and AuNPs were used to augment electronic transmission and sensitivity. The molecularly imprinted polymers (MIPs) were synthesized using OTC as the template molecule and o-phenylenediamine (OPD) as the functional monomer. They were modified on a gold electrode by electropolymerization. The electrochemical behavior of OTC at the imprinted sensor was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), and amperometry. The molecularly imprinted sensor showed high selectivity and excellent stability toward OTC. The linear range was from 3.0 × 10?8 to 8.0 × 10?5 mol/L, with a limit of detection (LOD) of 2.7 × 10?8 mol/L (S/N = 3). The developed sensor showed good recovery in spiked samples analysis.  相似文献   

6.
A novel nanocomposite of molecularly imprinted polymers and graphene sheets was fabricated and used to obtain a highly conductive acetylene black paste electrode with high conductivity for the detection of bisphenol A. The two‐dimensional structure and the chemical functionality of graphene provide an excellent surface for the enhancement of the sensitivity of the electrochemical sensor and the specificity of molecularly imprinted polymers to improve detection of bisphenol A. The synergistic effect between graphene and molecularly imprinted polymers confers the nanocomposite with superior conductivity, broadened effective surface area and outstanding electrochemical performance. Factors affecting the performance of the imprinted sensor such as molecularly imprinted polymers concentration, foster time and scan rate are discussed. The sensor successfully detects bisphenol A with a wide linear range of 3.21 × 10?10 to 2.8 × 10?1 g/L (R = 0.995) and a detection limit of 9.63 × 10?11g/L. The fabricated sensor also possessed high selectivity and stability and exhibits potential for environmental detection of contaminants and food safety inspection.  相似文献   

7.
微囊藻毒素分子印迹传感器的制备与应用   总被引:1,自引:0,他引:1  
申晴  崔莉凤  赵硕  李科 《分析化学》2012,(3):442-446
以邻氨基酚为单体,微囊藻毒素(MC-LR)为模板,采用循环伏安法在金电极的表面电聚合成膜分子印迹材料,制备了传感器。采用安培法对MC-LR进行检测。在制备影响条件最佳值(pH=4.5;单体/模板=1.4×108∶1;洗脱时间10 min)的基础上,对该传感器的线性范围、使用寿命、选择性等进行了研究,并与液相色谱方法进行对比,结果表明:该传感器对MC-LR具有良好的选择性和灵敏度,线性范围为0.05~0.35 mg/L;加标回收率为80%~105%;检出限为7.3μg/L。与液相色谱方法对比,当置信度为99%时,无系统误差。  相似文献   

8.
A novel capacitive sensor based on electropolymerized molecularly imprinted polymer (MIP) for thiopental detection is described. The molecularly imprinted film as a recognition element was prepared by electropolymerization of phenol on a gold electrode in the presence of thiopental (template). Cyclic voltammetry and capacitive measurements were used for characterization and evaluation of the polymeric film. The template molecules were removed from the modified electrode surface by washing with an ethanol:water solution. The sensor’s linear response range was between 3 and 20 µM, with a detection limit of 0.6 µM. The proposed sensor exhibited good selectivity, reproducibility. Satisfactory results were obtained in the direct detection of real samples.  相似文献   

9.
A sensitive molecularly imprinted electrochemical sensor with specific recognition ability for oleanolic acid was synthesized by modification of multiwalled carbon nanotubes (MWNTs) decorated with tin oxide nanoparticles (nano‐SnO2/MWNTs) and polypyrrole‐imprinted polymer on a carbon electrode. The morphology and electrochemical performance of the imprinted sensor were investigated by using scanning electron microscope (SEM), X‐ray diffraction (XRD), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometric it curve. The results showed that the imprinted sensor displayed excellent selectivity toward oleanolic acid. A linear relationship between the response currents and oleanolic acid concentrations ranging from 5.0×10?8 g/L to 2.0×10?5 g/L was obtained for the imprinted sensor. The limit of detection (LOD) of the imprinted sensor toward oleanolic acid was calculated as 8.6×10?9 g/L at a signal to noise ratio (S/N) of 3. This imprinted sensor was successfully applied to the determination of oleanolic acid in Acitinidia deliciosa root samples.  相似文献   

10.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

11.
Wang Z  Li H  Chen J  Xue Z  Wu B  Lu X 《Talanta》2011,85(3):1672-1679
A novel electrochemical sensor based on molecularly imprinted polymer film has been developed for aspirin detection. The sensitive film was prepared by co-polymerization of p-aminothiophenol (p-ATP) and HAuCl(4) on the Au electrode surface. First, p-ATP was self-assembled on the Au electrode surface by the formation of Au-S bonds. Then, the acetylsalicylic acid (ASA) template was assembled onto the monolayer of p-ATP through the hydrogen-bonding interaction between amino group (p-ATP) and oxygen (ASA). Finally, a conductive hybrid membrane was fabricated at the surface of Au electrode by the co-polymerization in the mixing solution containing additional p-ATP, HAuCl(4) and ASA template. Meanwhile, the ASA was spontaneously imprinted into the poly-aminothiophenol gold nanoparticles (PATP-AuNPs) complex film. The amount of imprinted sites at the PATP-AuNPs film significantly increases due to the additional replenishment of ASA templates. With the significant increasing of imprinted sites and doped gold nanoparticles, the sensitivity of the molecular imprinted polymer (MIP) electrode gradually increased. The molecularly imprinted sensor was characterized by electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The linear relationships between current and logarithmic concentration were obtained in the range from 1 nmol L(-1) to 0.1 μmol L(-1) and 0.7 μmol L(-1) to 0.1 mmol L(-1). The detection limit of 0.3 nmol L(-1) was achieved. This molecularly imprinted sensor for the determination of ASA has high sensitivity, good selectivity and reproducibility, with the testing in some biological fluids also has good selectivity and recovery.  相似文献   

12.
《Analytical letters》2012,45(10):1712-1725
An electrochemical sensor for L-tryptophan based on a molecularly imprinted polymer was developed. The sensing film was prepared by the co-electropolymerization of o-phenylenediamine and hydroquinone on a gold electrode in the presence of L-tryptophan as the template. The performance of the L-tryptophan sensor was characterized by cyclic voltammetry, differential pulse voltammetry, and alternating current impedance. Under the optimal experimental conditions, the relative current change was linear to the concentration of L-tryptophan in the range of 1.0 × 10?8 to 1.0 × 10?6 mol/L and a detection limit of 0.50 × 10?8 mol/L was obtained. The sensor showed high sensitivity and selectivity for L-tryptophan. The imprinting factor was 3.58 and selectivity factors of L-tryptophan compared to analogs were larger than 2. The sensor also demonstrated good resistance to acidic, basic, and organic environments.  相似文献   

13.
利用TiO_2膜制作了一种分子印迹光电化学传感器用来测定克百威。研究了掺杂改性对TiO_2光催化效率的影响,结果表明掺杂Au的TiO_2分子印迹膜对克百威有较好的光催化降解作用。对膜厚度和吸附时间等实验条件进行优化。在最佳实验条件下,克百威浓度在1.00×10~(-9)~2.20×10~(-7)mol/L范围内与光电流呈良好的线性关系,检出限(S/N=3)为1.10×10~(-10)mol/L。该TiO_2分子印迹膜有较好的灵敏度、选择性和稳定性。利用该传感器对水样中克百威进行测定,回收率为98.7%~104.0%。  相似文献   

14.
以水杨酸(SA)为模板分子,邻苯二胺(o-PPD)及吡咯(Py)为复合功能单体,在石墨烯修饰的玻碳电极表面制备分子印迹电化学传感器(MIP/GO/GCE),用扫描电镜(SEM)观察印迹膜的表面形貌,方波伏安法(SWV)和循环伏安法(CV)对分子印迹传感器的性能进行表征。通过优化实验条件,显示SA浓度在1.0×10-8~1.0×10-2 mol/L范围内,分子印迹传感器峰电流与SA浓度负对数具有良好的线性关系,检出限为8.6×10-9 mol/L。该传感器对SA具有良好的选择性,样品回收率为101%~106%,相对标准偏差(RSD)为3.8%。SA分子印迹传感器的制备简单、抗干扰性好、灵敏度高、成本低廉,具有较好实用价值。  相似文献   

15.
以辣根过氧化物酶(HRP)为蛋白质模板分子, 邻苯二胺(o-PD)为聚合单体, 首先将预先羧基化的多壁碳纳米管(MWCNTs)通过阶跃电位法电沉积在玻碳电极上作为增敏材料, 然后在该电极上电聚合含HRP的邻苯二胺电沉积液形成一层聚合膜, 去除模板化合物后, 制得对HRP具有特异性识别能力的分子印迹聚合物(MIPs)膜; 利用聚邻苯二胺(POPD)的自探针效应构建了分子印迹电化学传感器. 该传感器的响应电流与HRP浓度在1.0×10 -10~1.0×10 -5 mg/mL范围内有良好的线性关系, 相关系数为0.991, 检出限为1.5×10 -11 mg/mL(S/N=3); 该传感器的响应电流与H2O2浓度在4.0×10 -7~1.4×10 -5 mol/L范围内有良好的线性响应, 相关系数为0.992, 检出限为2.6×10 -7 mol/L(S/N=3), 将该传感器用于实际样品H2O2的检测, 回收率在91.2%~97.1%之间. 建立了基于MIPs膜的HRP和H2O2双分析物传感器的制备方法, 该方法可应用于酶及其酶促底物双分析物传感器.  相似文献   

16.
An imprinted fluorescent sensor was fabricated based on SiO2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core‐shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ‐fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ‐fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety.  相似文献   

17.
以丙烯酰胺为功能单体,葛根素为模板分子,马来松香丙烯酸乙二醇酯为交联剂,采用循环伏安法合成了葛根素分子印迹膜,并以此为识别元件制备了葛根素电化学传感器。该传感器对葛根素具有高度的选择性和良好的敏感度,葛根素氧化峰电流与其浓度在6.0×10-8~1.6×10-3mol/L范围内呈良好的线性关系,检出限为2.0×10-8mol/L。将此传感器用于葛根素注射液和木瓜葛根片中葛根素的含量测定,回收率为97.7%~106.4%。  相似文献   

18.
A novel molecularly imprinted sensor was firstly prepared based on a carbon nanotubes/graphene composite modified carbon electrode (MIPs/CNT/GP/CE) for the selective determination of bovine serum albumin. The molecularly imprinted sensor was tested by differential pulse voltammetry (DPV) to investigate the relationship between the response current and bovine serum albumin concentration. The results showed that a wide linear range (1.0×10?4 to 1.0×10?10 g mL?1) for the detection of bovine serum albumin with a low detection limit of 6.2×10?11 g mL?1 for S/N=3 was obtained. The novel imprinted sensor exhibited high selectivity, sensitivity, and reproducibility, which provided an applicable way for sensor development.  相似文献   

19.
以SiO2三维光子晶体为模板,2,4,6-三氯酚为印迹分子,甲醇为溶剂,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸甲酯为交联剂,通过紫外光引发聚合,在2%氢氟酸溶液中去除光子晶体模板,0.015 mol/L NaOH溶液中洗脱印迹分子,制得2,4,6-三氯酚检测用分子印迹光子晶体水凝胶传感器。结果表明,传感器对2,4,6-三氯酚具有良好的响应与识别能力,在2,4,6-三氯酚浓度由0增加到6×10-4 mol/L过程中,吸收峰红移31 nm;浓度继续增加,吸收峰开始发生蓝移;当浓度增加到1×10-3 mol/L时,吸收峰蓝移56 nm,响应时间仅需要30 min。2,4,6-三氯酚分子印迹光子晶体水凝胶传感器具有高灵敏、高选择、易操作等优点,可实现对2,4,6-三氯酚的裸眼检测。  相似文献   

20.
采用N,N′-亚甲基双丙烯酰胺(MBA)为功能单体、钯纳米粒子为掺杂剂、马来松香丙烯酸乙二醇酯为交联剂,在玻碳电极上热聚合具有三甲氧苄啶(TMP)识别性能的钯纳米材料修饰的分子印迹传感膜.采用扫描电镜及红外光谱对合成的钯纳米材料、印迹传感膜的形貌及其结构进行了表征;采用循环伏安法(CV)、交流阻抗法(EIS)对钯纳米粒子掺杂的印迹电极与无掺杂电极的电化学性能进行了研究.结果表明,纳米粒子掺杂的印迹电极与无掺杂电极的表面形貌及电化学性能明显不同.差分脉冲伏安法(DPV)表征结果表明,TMP的浓度在5.0×10-7~4.0 ×10-3 mol/L范围内与脉冲峰电流呈良好的线性关系(R=0.9995),检出限为3.2×10-8 mol/L (S/N=3).此钯纳米粒子掺杂的印迹传感器具有较高的灵敏度.即时电流测定结果表明,新诺明(SMZ)、磺胺嘧啶(SDZ)、葡萄糖 (Glu)、尿素 (Urea)对三甲氧苄啶(TMP)的测定不产生干扰.将此印迹传感器用于实际样品中TMP的检测,加标回收率为96.8%~102.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号