首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Reaction of manganese(II) perchlorate hexahydrate with a methanol solution of 1-thia-4,7-diazacyclononane ([9]aneN(2)S) resulted in the isolation of the manganese(II) complex [Mn([9]aneN(2)S)(2)](ClO(4))(2). The X-ray structure of this complex is reported: crystal system orthorhombic, space group Pbam, No. 55, a = 7.937(2) ?,b = 8.811(2) ?, c = 15.531(3) ?, Z = 2, R = 0.0579. The complex is high spin (S = (5)/(2)) with an effective magnetic moment (&mgr;(eff)) 5.82 &mgr;(B) at 298 K and 5.65 &mgr;(B) at 4.2 K. Computer simulation of the Q-band EPR spectrum of [Mn([9]aneN(2)S)(2)](ClO(4))(2) yields g = 1.99 +/- 0.01, |D| = 0.19 +/- 0.005 cm(-)(1), and E/D = 0.04 +/- 0.02. For the analogous hexaamine complex [Mn([9]aneN(3))(2)](ClO(4))(2) ([9]aneN(3) = 1,4,7-triazacyclononane) analysis of the EPR spectra produced the following values: g = 1.98 +/- 0.01, |D| = 0.09 +/- 0.003 cm(-)(1), and E/D = 0.1 +/- 0.01. The spin Hamiltonian parameters for [Mn([9]aneN(2)S)(2)](ClO(4))(2) derived from the EPR spectra produced a good fit to the magnetic susceptibility data.  相似文献   

2.
本文合成了两个新的双核配合物, [Cu(sampu)Ni(L)2], sampn^4^-表示N,N'-1,2-丙二水杨酰胺阴离子, L表示2,2-联吡啶(bpy)或1,10-菲咯啉(phen),经元素分析, IR和电子光谱等方法已推定配合物具有酚氧桥结构和Cu(II)及Ni(II)的配位环境分别为平面四方及八面体构型, 配合物的变温磁化率已测(4-300K), 其数值用最小二乘法和从自旋哈密顿算符H=-2JS1S2导出的磁方程拟合, 求得交换参数为J=-1.90cm^-^1(pby)和J=1.68cm^-^1(phen), 表明两个Cu(II)-Ni(II)双核配合物中有弱的反铁磁自旋交换相互作用。  相似文献   

3.
4.
Two polymorphic products, [[Cu(tmeda)(mu-OH)}2Au(CN)4][Au(CN)4] (1) and [Cu(tmeda)(mu-OH)Au(CN)4]2 (2), were synthesized from {Cu(tmeda)(mu-OH)}(2)X(2) (tmeda = N,N,N',N'-tetramethylethylenediamine, X = ClO4-, BF4-) and 2 equiv of K[Au(CN)4], and their X-ray structures were determined. Both compounds have [Cu(tmeda)(mu-OH)}2(2+) dimers with [Au(CN)4]- units bound in the axial positions. However, in 1, two trans N-donor cyanides of each [Au(CN)4]- unit bind to adjacent copper(II) dimers, forming a 1-D chain, whereas complex 2 is molecular, with two mono-coordinated [Au(CN)4]- units. The 1-D polymorph 1 is formed from aqueous solution, while the molecular polymorph 2 is obtained with X = BF4- in methanol. The polymorphs have slightly different Cu-O-Cu angles, a key magnetostructural parameter, such that the 1-D chain 1, with an angle of 96.6(2) degrees, shows ferromagnetic interactions with 2J = +57.5 cm(-1) and g = 2.097, whereas the molecular complex 2, with an angle of 98.92(17) degrees, shows antiferromagnetic interactions with 2J = -143.6 cm(-1) and g = 2.047. A similar Cu(II) complex, [[Cu(tmeda)(mu-OH)]2Au(CN)4][ClO4].MeOH (3), was synthesized in methanol when X = ClO4-, in which the [Au(CN)4]- unit bridges the two Cu(II) centers within the dimer in an intramolecular fashion via cis N-donor cyanides. The average Cu-O-Cu angle of 98.4(2) degrees in 3 generates antiferromagnetic interactions with 2J = -64.8 cm(-1) and g = 2.214. Complexes 1-3 represent the first examples of [Cu(tmeda)(mu-OH)]2(2+) dimers with Cu-O-Cu angles under 100 degrees, thereby extending the range of 2J coupling constants for this moiety from 149 to 566 cm(-1). The switch to ferromagnetic interactions in 1 as a result of the coordinating, bridging [Au(CN)4]- anion suggests that cationic, dinuclear moieties that are typically antiferromagnetically coupled may, with an appropriate coordinating counterion, become ferromagnetic units.  相似文献   

5.
The ternary clusters (tmeda)(6)Zn(14-x)Mn(x)S(13)Cl(2) (1a-d) and (tmeda)(6)Zn(14-x)Mn(x)Se(13)Cl(2) (2a-d), (tmeda = N,N,N',N'-tetramethylethylenediamine; x ≈ 2-8) and the binary clusters (tmeda)(6)Zn(14)E(13)Cl(2) (E = S, 3; Se, 4;) have been isolated by reacting (tmeda)Zn(ESiMe(3))(2) with Mn(II) and Zn(II) salts. Single crystal X-ray analysis of the complexes confirms the presence of the six "(tmeda)ZnE(2)" units as capping ligands that stabilize the clusters, and distorted tetrahedral geometry around the metal centers. Mn(II) is incorporated into the ZnE framework by substitution of Zn(II) ions in the cluster. The polynuclear complexes (tmeda)(6)Zn(12.3)Mn(1.7)S(13)Cl(2)1a, (tmeda)(6)Zn(12.0)Mn(2.0)Se(13)Cl(2)2a, and (tmeda)(6)Zn(8.4)Mn(5.6)Se(13)Cl(2)2d represent the first examples of "Mn/ZnE" clusters with structural characterization and indications of the local chemical environment of the Mn(II) ions. The incorporation of higher amounts of Mn into 1d and 2d has been confirmed by elemental analysis. Density functional theory (DFT) calculations indicate that replacement of Zn with Mn is perfectly feasible and at least partly allows for the identification of some sites preferred by the Mn(II) metals. These calculations, combined with luminescence studies, suggest a distribution of the Mn(II) in the clusters. The room temperature emission spectra of clusters 1c-d display a significant red shift relative to the all zinc cluster 3, with a peak maximum centered at 730 nm. Clusters 2c-d display a peak maximum at 640 nm in their emission spectra.  相似文献   

6.
A mixed-valence Mn(III)-Mn(II)-Mn(III) trinuclear complex of stoichiometry MnIIIMnIIMnIII(Hsaladhp)2(Sal)4.2CH3CN (1), where H3saladhp is a tridentate Schiff-base ligand, has been structurally characterized with X-ray crystallography. The Mn(III)Mn(II)Mn(III) angles are strictly 180 degrees as required by crystallographic inversion symmetry. The complex is valence-trapped with two terminal Mn(III) ions in a distorted square pyramidal geometry. The Mn(III)...Mn(II) separation is 3.495 A. The trinuclear complex shows small antiferromagnetic exchange J coupling. The magnetic parameters obtained from the fitting procedure in the temperature range 10-300 K are J1 = -5.7 cm-1, g = 2.02, zJ = -0.19 cm-1, and R = 0.004. The EPR spectrum was obtained at 4 K in CHCl3 and in tetrahydrofuran glasses. The low-field EPR signal is a superposition of two signals, one centered around g = 3.6 and the other, for which hyperfine structure is observed, centered around g = 4.1 indicating an S = 3/2 state. In addition, there is a 19-line signal at g = 2.0. The multiline signal compares well with that observed for the S2 or S0* states of the oxygen-evolving complex. 1H NMR data reveal that the trinuclear compound keeps its integrity into the CHCl3 solution. Crystal data for complex 1: [C54H52N4O18Mn3], M = 1209.82, triclinic, space group P1, a = 10.367(6) A, b = 11.369(6) A, c = 13.967(8) A; alpha = 112.56(1) degree, beta = 93.42(2) degrees, gamma = 115.43(1) degree, Z = 1.  相似文献   

7.
An unprecedented atom connectivity, MnIV(mu-O)MnIV(mu-O)2MnIV(mu-O)MnIV, is found in the complex [MnIV4O4(EtO-terpy)4(OH)2(OH2)2](ClO4)(6).8H2O (EtO-terpy=4'-ethoxyl-2,2':6',2' '-terpyridine), which has been characterized by X-ray crystallography, X-ray powder diffraction, EPR spectroscopy, and magnetic studies. This complex is the first example of a compound where a MnIV ion is coordinated by all three types of water-derived ligands: oxo, hydroxo, and aqua. Bond distances and angles for this complex are consistent with a MnIV4 oxidation state assignment. The di-mu-oxo- and mono-mu-oxo-bridged Mn-Mn distances are 2.80 and 3.51 A, respectively. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S=0 ground state and were fit using the spin Hamiltonian HHDvV=-J1S2S1-J2S1S1A-J1S1AS2A (S1=S1A=S2=S2A=3/2) with J1=-432 cm-1 and J2=-164 cm-1 (where J1 and J2 are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively). The first excited spin state of this tetramer is a spin triplet state at 279 cm-1 above the diamagnetic ground state. The next spin states are the S=1 and S=2 levels at about 700 and 820 cm-1 above the S=0 ground state, respectively. These large energy gaps are consistent with the absence of an EPR signal for this complex, even at high temperature.  相似文献   

8.
9.
From a new tripodal ligand [N2SS'H] with mixed N, S(thioether), and S(thiolate) donor set, the corresponding bis(mu-thiolato)dicopper(II) complex has been prepared and characterized. X-ray crystallographic analysis of the complex [Cu2(N2SS')2](ClO4)2.C4H10O (1) demonstrates that the two five-coordinated Cu atoms are bridged by two thiolates leading to a nearly planar Cu2S2 core with a Cu1...Cu1* distance of 3.418(8) A and a large bridging angle Cu1S1Cu1* of 94.92 degrees. X-band (10 GHz), Q-band (34 GHz), and F-Band (115 GHz) EPR spectra of 1 are consistent with a weakly coupled dicopper(II,II) center attributed to an S = 1 state. Simulations for the three frequencies are obtained with a unique set of electronic parameters. The mean values of the spin Hamiltonian parameters for 1 are D = 0.210(3) cm(-1), E = 0.0295(5) cm(-1), |E/D| = 0.140, gx = 2.030(2), gy = 2.032(2), gz = 2.128(2). The electrochemical one-electron reduction of 1 generates the mixed-valent CuIICuI species. EPR and UV-vis spectra are consistent with a type I localized mixed-valent species, while dinuclear CuA centers of native cytochrome c oxidase (CcO)1-3 or nitrous oxide reductase (N2OR)4 have a delocalized CuIICuI mixed-valent state. After reoxidation of the CuIICuI species, the initial complex 1 is regenerated through a reversible interconversion process.  相似文献   

10.
Two heterometallic polymers containing cations [Cu(en)2]2+ and either the [Mn(mal)2(H2O)2]2- (1) or [Mn2(succ)2Cl2]n2n- (2) anions (mal=malonate and succ=succinate) were investigated by X-ray crystallography, high-field electron paramagnetic resonance (EPR) spectroscopy, and magnetic susceptibility measurements. Magnetic susceptibility and EPR spectra characteristic of antiferromagnetically coupled Mn2+-Mn2+ pairs were observed in 2, and the exchange integral J=31 cm(-1) (H=JS1S2) as well as the zero-field-splitting parameter D=-3.046 cm(-1) in the triplet state of the dimanganese entity was determined.  相似文献   

11.
A new mu-phenoxo-bis-mu-acetato di-Mn(II) complex using the BpmpH ligand was isolated as a perchlorate salt (BpmpH = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyl-phenol). The X-ray structure has been solved showing that the two Mn(II) ions are in a distorted octahedral environment. Investigation of the variation of the molar magnetic susceptibility upon temperature reveals an antiferromagnetic exchange interaction between the two high-spin Mn(II) ions. Fitting of the experimental data led to g = 1.99 and J = 9.6 cm(-1) (H(HDvV) = JS(A).S(B)). EPR spectra recorded on a powder sample of [(Bpmp)Mn(2)(mu-OAc)(2)](ClO(4)).0.5H(2)O at X-band between 4.3 K and room temperature and at Q-band between 5 and 298 K are presented. A new method based on a scrupulous examination of the variation upon temperature of these experimental spectra is developed here to first assign the transitions to the relevant spin states and second to determine the associated spin parameters. This approach is compared to the deconvolution process that has been previously applied to dinuclear Mn(II) complexes or metalloenzyme active sites. Crystallographic data is as follows: triclinic, space group P one macro, a = 10.154(2) A, b = 12.0454(2) A, c = 17.743(4) A, alpha = 101.69(3) degrees, beta = 93.62(3) degrees, gamma = 94.67(3) degrees, Z = 2.  相似文献   

12.
The reaction of [Mn(CH2tBu)2(tmeda)] (1) and a silica partially dehydroxylated at 700 degrees C (SiO(2/700)) yields a single surface species [([triple bond]SiO)Mn(CH2tBu)(tmeda)] (2a; tmeda = tetramethylethylendiamine), while a mixture of 2a and [([triple bond]SiO)2Mn(tmeda)] (2b) is obtained by using SiO(2/200), SiO(2/300), or SiO(2/500) as evidenced by mass balance analysis, and IR and EPR spectroscopy. The reaction of 1 and (c-C5H9)7Si7O12SiOH (3), a soluble silanol that is a molecular model for a silica support, generates the bis-siloxy complex 4, [[(c-C5H9)7Si7O12SiO]2Mn(tmeda)2], in a quantitative yield; compound 4 was characterized by single-crystal X-ray diffraction. These reactions exemplify the limitation of considering molecular silanol derivatives as straightforward and reliable homogeneous models for silica, and address the need for thorough characterization of surface species by the use of surface-science techniques. These studies show the possibility of preparing coordinatively and geometrically unique surface species that would be difficult to prepare by solution chemistry methods; insights into the chemical and physical properties of these surface species are also gained.  相似文献   

13.
The syntheses, crystal structures, and magnetochemical characterization are reported for three new mixed-valent Mn clusters [Mn(8)O(3)(OH)(OMe)(O(2)CPh)7(edte)(edteH(2))](2)CPh) (1), [Mn(12)O(4)(OH)(2)(edte)(4)C(l6)(H(2)O)(2)] (2), and [Mn(20)O(8)(OH)(4)(O(2)CMe)(6)(edte)(6)](ClO(4))(2) (3) (edteH(4) = (HOCH(2)CH(2))(2)NCH(2)CH(2)N(CH(2)CH(2)OH)(2) = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine). The reaction of edteH(4) with Mn(O(2)CPh)(2), MnCl(2), or Mn(O(2)CMe)(2) gives 1, 2, and 3, respectively, which all possess unprecedented core topologies. The core of 1 comprises two edge-sharing [Mn(4)O(4)] cubanes connected to an additional Mn ion by a micro(3)-OH- ion and two alkoxide arms of edteH(22-). The core of 2 consists of a [Mn(12)(micro(4-)O)(4)](24+) unit with S4 symmetry. The core of 3 consists of six fused [Mn(4)O(4)] cubanes in a 3 x 2 arrangement and linked to three additional Mn atoms at both ends. Variable-temperature, solid-state dc and ac magnetization (M) studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained M/Nmicro(B) vs H/T data by matrix diagonalization and including only axial zero-field splitting (ZFS) gave ground-state spin (S) and axial ZFS parameter (D) of S = 8, D = -0.30 cm-1 for 1, S = 7, D = -0.16 cm-1 for 2, and S = 8, D = -0.16 cm-1 for 3. The combined work demonstrates that four hydroxyethyl arms on an ethylenediamine backbone can generate novel Mn structural types not accessible with other alcohol-based ligands.  相似文献   

14.
A phosphorus supported multisite coordinating ligand P(S)[N(Me)N=CH-C(6)H(4)-o-OH](3) (2) was prepared by the condensation of the phosphorus tris hydrazide P(S)[N(Me)NH(2)](3) (1) with o-hydroxybenzaldehyde. The reaction of 2 with M(OAc)(2).xH(2)O (M = Mn, Co, Ni, x = 4; M = Zn, x = 2) afforded neutral trinuclear complexes [P(S)[N(Me)N=CH-C(6)H(4)-o-O](3)](2)M(3) [M = Mn (3), Co (4), Ni (5), and Zn (6)]. The X-ray crystal structures of compounds 2-6 have been determined. The structures of 3-6 reveal that the trinculear metal assemblies are nearly linear. The two terminal metal ions in a given assembly have an N(3)O(3) ligand environment in a distorted octahedral geometry while the central metal ion has an O(6) ligand environment also in a slightly distorted octahedral geometry. In all the complexes, ligand 2 coordinates to the metal ions through three imino nitrogens and three phenolate oxygens; the latter act as bridging ligands to connect the terminal and central metal ions. The compounds 2-6 also show intermolecular C-H...S=P contacts in the solid-state which lead to the formation of polymeric supramolecular architectures. The observed magnetic data for the (s = 5/2)3 L(2)(Mn(II))(3) derivative, 3, show an antiferromagnetic nearest- and next-nearest-neighbor exchange (J = -4.0 K and J' = -0.15 K; using the spin Hamiltonian H(HDvV) = -2J(S(1)S(2) + S(2)S(3)) - 2J'S(1)S(3)). In contrast, the (s = 1)(3) L(2)(Ni(II))(3) derivative, 5, displays ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions (J = 4.43 K and J' = -0.28 K; H = H(HDvV)+ S(1)DS(1) + S(2)DS(2)+ S(3)DS(3)). The magnetic behavior of the L(2)(Co(II))(3) derivative, 4, reveals only antiferromagnetic exchange analogous to 3 (J = -4.5, J' = -1.4; same Hamiltonian as for 3).  相似文献   

15.
The electronic structure and magnetic properties of the manganese(IV) trihydrazide propeller complex, Li(2)Mn(κ(2)-PhN-NPh)(3)L(2) (1, L = tetrahydrofuran, diethyl ether), are explored. EPR and solid-state magnetometry studies are indicative of a high spin Mn(IV) with a S = 3/2 spin state. Solution-phase magnetic measurements result in a measured μ(eff) less than that expected for a S = 3/2, indicating a solution-phase equilibrium with a lower-spin species. Concentration-dependent magnetic susceptibility measurements identify clustering of 1 to an antiferromagnetically coupled multinuclear complex as the most likely explanation for the solution behavior. Comparative infrared spectroscopy in solution and solid phase are described which support speciation in solution.  相似文献   

16.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

17.
Binuclear manganese complexes Mn2(III/IV)(dtsalpn)2DCBI, 1, Mn2(III/III)(dtsalpn)2HDCBI, 2, containing the ligand dicarboxyimidazole (DCBI) have been prepared in order to address the issue of imidazole bridged and ferromagnetically coupled Mn sites in high oxidation states of the OEC in Photosystem II (PS II). Temperature dependent magnetic susceptibility studies of 1 indicates that the interaction between the two Mn(III)/Mn(IV) ions is ferromagnetic (J = +1.4 cm(-1)). Variable temperature EPR spectra of 1 shows that a g = 2 multiline is as an excited state signal corresponding to S = 1/2.  相似文献   

18.
A pseudo-octahedral complex of high-spin Fe(II), bis(2,2'-bi-2-thiazoline)bis(isothiocyanato)iron(II), which has a cis-FeN'2N4 chromophore, has been investigated by high-frequency, high-field electron paramagnetic resonance (HFEPR). Complementary M?ssbauer and DC magnetic susceptibility studies were also performed. HFEPR spectra of powder samples were recorded at frequencies up to 700 GHz and over a magnetic field range of 0-25 T. Analysis of the field-frequency data set yields the following set of spin Hamiltonian parameters for S = 2: D = +12.427(12) cm-1, E = +0.243(3) cm-1; gx = 2.147(3), gy = 2.166(3), gz = 2.01(1). The parameters are analyzed by use of a simple crystal-field model. This study represents the first precise determination by HFEPR of spin Hamiltonian parameters in six-coordinate high-spin Fe(II) and indicates the applicability of HFEPR to the study of high-spin Fe(II) in coordination complexes and biological model compounds.  相似文献   

19.
Two new azido-bridged polyoxometalate compounds were synthesized in acetonitrile/methanol media and their molecular structures have been determined by X-ray crystallography. The [[(gamma-SiW10O36)Mn2(OH)2(N3)(0.5)(H2O)(0.5)]2(mu-1,3-N3)](10-) (1 a) tetranuclear Mn(III) complex, in which an end-to-end N3- ligand acts as a linker between two [(gamma-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(mu-OH) bridge (J1 = -25.5 cm(-1)) and the mu-1,3-azido bridge (J2 = -19.6 cm(-1)). The [(gamma-SiW10O36)2Cu4(mu-1,1,1-N3)2(mu-1,1-N3)2]12- (2 a) tetranuclear Cu(II) complex consists of two [gamma-SiW10O36Cu2(N3)2]6- subunits connected through the two mu-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four Cu(II) centers, leading to an S=2 ground state (H = -J1(S1S2+S1*S2*)-J2(S2S2*), J1 = +294.5 cm(-1), J2 = +1.6 cm(-1), g = 2.085). The ferromagnetic coupling between the Cu(II) centers in each subunit is the strongest ever observed either in a polyoxometalate compound or in a diazido-bridged Cu(II) complex. Considering complex 2 a and the previously reported basal-basal di-(mu-1,1-N3)-bridged Cu(II) complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*theta(av) between the theta(av) bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2 a has also been investigated by using multifrequency high-field electron paramagnetic resonance (HF-EPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm(-1), E = -0.003(2) cm(-1), g(x) = 2.290(5), g(y) = 2.135(10), g(z) = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm(-1), E = -0.080(5) cm(-1), g(x) = 2.042(5), g(y) = 2.335(5), g(z) = 2.095(5)) have been determined, since the energy gap between these two spin states is very small (1.6 cm(-1)).  相似文献   

20.
The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, and has an Fe(III)Mn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Two quasireversible electron transfers at -870 and +440 mV versus Fc/Fc(+) corresponding to the Fe(II)Mn(II)/Fe(III)Mn(II) and Fe(III)Mn(II)/Fe(III)Mn(III) couples, respectively, appear in the cyclic voltammogram. The dinuclear Fe(III)Mn(II) center has weakly antiferromagnetic coupling with J = -6.8 cm(-1) and g = 1.93. The (57)Fe M?ssbauer spectrum exhibits a single doublet, delta = 0.48 mm s(-1) and DeltaE(Q) = 1.04 mm s(-1) for the high spin Fe(III) ion. Phosphatase-like activity at pH 6.7 with the substrate 2,4-bis(dinitrophenyl)phosphate reveals saturation kinetics with the following Michaelis-Menten constants: K(m) = 2.103 mM, V(max) = 1.803 x 10(-5) mM s(-1), and k(cat) = 4.51 x 10(-4) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号