首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Out-of-center "primary" electronic distortions are inherent to the oxide fluoride anions of the early d0 transition metals. In the [NbOF5]2- anion, the Nb5+ moves from the center of the octahedron toward the oxide ligand to form a short Nb=O bond and long trans Nb-F bond. The combined results of single-crystal X-ray diffraction and electronic structure calculations indicate that the primary distortion of the [NbOF5]2- anion is affected by the coordination environment that is created by the three-dimensional extended structure. The formation of bonds between an M(L)4(2+) (M = Cd2+, Cu2+; L = 3-aminopyridine, 4-aminopyridine) cation and the oxide and/or trans-fluoride ligands of the [NbOF5]2- anion weakens the pi component of the Nb=O bond. At the same time, hydrogen bond interactions between the equatorial fluorides and the aminopyridine groups both lengthen the equatorial Nb-F bonds and can further reduce the symmetry of the [NbOF5]2- anion. These combined three-dimensional bond network interactions that serve to lengthen the Nb=O bond and thereby decrease the primary distortion of the [NbOF5]2- anion are illustrated in the structures of three new niobium oxide fluoride phases, [4-apyH]2[Cu(4-apy)4(NbOF5)2] (4-apy = 4-aminopyridine), Cd(3-apy)4NbOF5 (3-apy = 3-aminopyridine), and Cu(3-apy)4NbOF5, that were synthesized and characterized using X-ray diffraction. Crystal data for [4-apyH]2[Cu(4-apy)4(NbOF5)2]: tetragonal, space group /4(1)/ acd (No. 142), with a = 20.8745(8) A, c = 17.2929(9) A, and Z= 8. Cd(3-apy)4NbOF5: tetragonal, space group P4(3) (No. 78), with a = 8.4034(4) A, c = 34.933(3) A, and Z = 4. Cu(3-apy)4NbOF5: monoclinic, space group P2(1)/n (No. 14), with a = 8.822(1) A, b = 16.385(3) A, c = 8.902(1) A, beta = 109.270(3) degrees, and Z = 2.  相似文献   

2.
Raman spectra have been obtained for matrix-isolated AlF6(3-) in an LiF/NaF/KF (FLINAK) eutectic mixture. Three Raman bands characteristic of the hexafluoroaluminate ion were identified in the solids formed from FLINAK melts which contained small amounts (5-11 mol%) of either AlF3 or Na3AlF6. The three allowed Raman-active bands of the matrix-isolated octahedral complex ion, nu 1(A1g), nu 2(Eg), and nu 5(F2g), were observed at 560.5, 380, and 325 cm-1, respectively, for the solid sample at 25 degrees C. Wavenumbers and relative intensities were similar to those of Na3AlF6 (cryolite), K3AlF6, and K2NaAlF6 (elpasolite) and other crystals known to contain discrete, octahedral AlF6(3-) ions. Peak positions, half-widths, and relative intensities for the bands were measured for samples at temperatures different from room temperature through the melting transition and into the molten state. The transition from high-temperature solid to molten salt at about 455 degrees C occurred gradually without perceptible change in the peak positions, half-widths, or relative intensities. For a sample in molten FLINAK at 455 degrees C, the nu 1(A1g), nu 2(Eg), and nu 5(F2g) modes of the AlF6(3-) ion were observed at 542, 365, and 324 cm-1, respectively. Raman depolarization experiments were consistent with these assignments, and the low value of the depolarization ratio of the nu 1(A1g) mode at 542 cm-1 indicated that the sample was molten above 455 degrees C. Differential thermal analysis also indicated that the FLINAK samples melted at about 455 degrees C. Raman measurements were performed for samples at temperatures from 25 to 600 degrees C in a silver dish, on a hot stage, in an argon-filled atmosphere, under a microscope. Additional Raman experiments were performed on samples at temperatures from 25 to 750 degrees C in a conventional graphite windowless cell, in an argon-filled quartz tube, in a standard furnace. Over the concentration range 4.8-11 mol% AlF3 (CR 23-8.0) in FLINAK, only bands due to the AlF6(3-) ion were detected. There was no evidence to support the presence of other aluminum complexes in these melts.  相似文献   

3.
The equilibrium constant for the chloro complex formation of Nb(V) NbCl6-<--->NbCl5+Cl- (i) in NaCl-AlCl3 melts at 175 degrees C was found to be pKi = 2.86(5). The oxochloro complex formation of Nb(V) and Ta(V) in NaCl-AlCl3 melts at 175 degrees C could be explained by the following equilibria: MOCl4- <-->MOCl3+Cl- (ii) MOCl3<-->MOCl2(+)+Cl- (iii) where M = Nb and Ta. The equilibrium constants determined by potentiometric measurements with chlorine-chloride electrodes were, for M = Nb, pKii = 2.21(4) and pKiii = 3.95(5) and, for M = Ta, pKii = 2.743(15) and pKiii = 4.521(13). NbCl6- has two bands in the UV-vis region, a strong one at 34.7 x 10(3) cm-1 and a weaker one at 41.6 x 10(3) cm-1. The MOCl4- complexes showed in the case of Nb(V) absorption bands at 32.7 and 42.9 x 10(3) cm-1 and in the case of Ta(V) at 38.6 and 48.1 x 10(3) cm-1.  相似文献   

4.
The catalytically relevant Nb2Mo3O14 phase has been prepared in bulk and silica-supported forms via the so-called "multiple molecular precursors method" from water-soluble oxo-oxalato complexes of Nb and Mo, (NH4)3[NbO(ox)3].H2O, and (NH4)2[MoO3(ox)].H2O. Thermal treatment of the mixed Nb-Mo precursor has been optimized for the formation of the pure Nb2Mo3O14 phase, either as bulk oxide or a silica-supported phase with high specific surface area. A characterization of the bulk phase obtained via the conventional ceramic route has also been carried out and a comparison has been made with the precursors route. According to this route, the Nb2Mo3O14 phase is shown to be formed in a pure form at 700 degrees C (i.e., 100 degrees C below the lowest temperature reported so far for the formation of the phase by the ceramic method). The supported samples have appreciable specific surface areas of 60-70 m(2) g(-1), much larger than those reached in the previous attempts under vacuum in sealed vials. The SEM and EDX analyses reveal a high dispersion of the desired phase on the silica support.  相似文献   

5.
Two new niobium and zinconiobium fluorophosphates, NbOF(PO4)2(C2H10N2)2 (1) and Zn3(NbOF)(PO4)4-(C2H10N2)2 (2), have been prepared under hydrothermal conditions using ethylenediamine as a template. The structures were determined by single crystal diffraction to be triclinic, space group P1 (No. 2), a = 8.1075 (6) A, b = 9.8961 (7) A, c = 10.1420(8) A, alpha = 111.655(1) degrees, beta = 111.51(1) degrees, gamma = 93.206(1) degrees, V = 686.19(9) A3, and Z = 2 for 1 and orthorhombic, space group Fddd (No. 70), a = 9.1928(2) A, b = 14.2090(10) A, c = 32.2971 (6) A, V = 4218.66(12) A3, and Z = 8 for 2, respectively. Compound 1 is an infinite linear chain consisting of corner-sharing [Nb2P2] 4-MRs bridged at the Nb centers with organic amines situated between chains, and compound 2, containing the chains similar to that in 1, forms a zeotype framework with organic amines situated in the gismondine-type [4684] cavities. The topology of 2 was previously unknown with vertex symbol 4 x 4 x 4 x 4 x 8 x 8 (vertex 1), 4 x 4 x 4 x 82 x 8 x 8 (vertex 2), 4 x 4 x 8 x 8 x 82 x 82 (vertex 3), and 4 x 4 x 4 x 82 x 8 x 8 (vertex 4). The topological relationships between the 4-connected network of 2 and several reported (3,4)-connected networks were discussed.  相似文献   

6.
High-resolution transmission electron microscopy and electron energy loss spectroscopy (EELS) were performed on electrochemically anodized niobium and niobium oxide. Sintered anodes of Nb and NbO powders were anodized in 0.1 wt% H3PO4 at 10, 20, and 65 V to form surface Nb2O5 layers with an average anodization constant of 3.6 +/- 0.2 nm/V. The anode/dielectric interfaces were continuous and the dielectric layers were amorphous except for occurrences of plate-like, orthorhombic pentoxide crystallites in both anodes formed at 65 V. Using EELS stoichiometry quantification and relative chemical shifts of the Nb M4,5 ionization edge, a suboxide transition layer at the amorphous pentoxide interface on the order of 5 nm was detected in the Nb anodes, whereas no interfacial suboxide layers were detected in the NbO anodes.  相似文献   

7.
We present a (re)investigation of the hexaoxometalates Li(8)MO(6) (M = Sn, Pb, Zr, Hf) and Li(7)MO(6) (M = Nb, Ta, Sb, Bi). Lithium motion and ionic conductivity in the hexaoxometalates were studied using impedance spectroscopy (for Li(7)MO(6), M = Sb, Bi, Ta) and (6)Li and (7)Li solid-state nuclear magnetic resonance (for Li(7)TaO(6)). The NMR data indicate a considerable exchange of Li among the tetrahedral and octahedral voids even at ambient temperature. In an investigation of the crystal structures using laboratory and synchrotron X-ray powder diffraction techniques, the structures of Li(7)TaO(6), Li(7)NbO(6), and Li(7)SbO(6) could be solved and refined. All three reveal a triclinic metric (Li(7)SbO(6), triclinic, P1, a = 5.38503(6) A, b = 5.89164(7) A, c = 5.43074(6) A, alpha = 117.2210(6) degrees, beta = 119.6311(6) degrees, gamma = 63.2520(7) degrees, V = 127.454(3) A(3), Z = 1; Li(7)NbO(6), triclinic, P1, a = 5.37932(9) A, b = 5.91942(11) A, c = 5.37922(9) A, alpha = 117.0033(9) degrees, beta = 119.6023(7) degrees, gamma = 63.2570(9) degrees, V = 126.938(4) A(3), Z = 1; Li(7)TaO(6), triclinic, P1, a = 5.38486(2) A, b = 5.92014(3) A, c = 5.38551(2) A, alpha = 117.0108(2) degrees, beta = 119.6132(2) degrees, gamma = 63.2492(2) degrees, V = 127.208(1) A(3), Z = 1.  相似文献   

8.
Adsorption and solar light decomposition of acetone was studied on nanostructured anatase TiO2 and Nb-doped TiO2 films made by sol-gel methods (10 and 20 mol % NbO2.5). A detailed characterization of the film materials show that films contain only nanoparticles with the anatase modification with pentavalent Nb oxide dissolved into the anatase structure, which is interpreted as formation of substituted Nb=O clusters in the anatase lattice. The Nb-doped films displayed a slight yellow color and an enhanced the visible light absorption with a red-shift of the optical absorption edge from 394 nm for the pure TiO2 film to 411 nm for 20 mol % NbO2.5. In-situ Fourier transform infrared (FTIR) transmission spectroscopy shows that acetone adsorbs associatively with eta1-coordination to the surface cations on all films. On Nb-doped TiO2 films, the carbonyl bonding to the surface is stabilized, which is evidenced by a lowering of the nu(C=O) frequency by about 20 cm(-1) to 1672 cm(-1). Upon solar light illumination acetone is readily decomposed on TiO2, and stable surface coordinated intermediates are formed. The decomposition rate is an order of magnitude smaller on the Nb-doped films despite an enhanced visible light absorption in these materials. The quantum yield is determined to be 0.053, 0.004 and 0.002 for the pure, 10% Nb:TiO2, and 20%Nb:TiO2, respectively. Using an interplay between FTIR and DFT calculations we show that the key surface intermediates are bidentate bridged formate and carbonate, and H-bonded bicarbonate, respectively, whose concentration on the surface can be correlated with their heats of formation and bond strength to coordinatively unsaturated surface Ti and Nb atoms at the surface. The oxidation rate of these intermediates is substantially slower than the initial acetone decomposition rate, and limits the total oxidation rate at t>7 min on TiO2, while no decrease of the rate is observed on the Nb-doped films. The rate of degradation of key surface intermediates is different on pure TiO2 and Nb-doped TiO2, but cannot explain the overall lower total oxidation rate for the Nb-doped films. Instead the inferior photocatalytic activity in Nb-doped TiO2 is attributed to an enhanced electron-hole pair recombination rate due to Nb=O cluster and cation vacancy formation.  相似文献   

9.
Six new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems have been prepared by solid-state reactions at high-temperatures. Their structures were determined by single-crystal X-ray diffraction studies. AM(3)O(6)(QO(3))(2) (A = K, Rb, M = Nb, Ta, Q = Te; A = K, M = Nb, Q = Se) are isomorphous and their structures feature a 3D network with 1D 4- and 6-MRs tunnels along the a-axis which is composed of 2D layers of corner-sharing MO(6) octahedra bridged by QO(3) groups. The alkali metal ions are located at the above 1D tunnels of 6-MRs. The structure of Cs(3)Nb(9)O(18)(TeO(3))(2)(TeO(4))(2) features a thick Nb-Te-O layer built of corner-sharing NbO(6) octahedra, TeO(3) and TeO(4) groups. The 2D layer of the NbO(6) octahedra with 1D tunnels of 6-MRs along the c-axis are formed by 1D chains of NbO(6) chains along the c-axis and linear Nb(4)O(21) tetramers by corner-sharing. The TeO(3) and TeO(4) groups are grafted on both sides of the niobium-oxide layer via Nb-O-Te or/and Te-O-Te bridges. The caesium(i) ions are located at the above 1D tunnels of 6-MRs. TGA, UV-vis and infrared spectral measurements as well as electronic structure calculations have also been performed.  相似文献   

10.
铌取代Dawson结构钨磷杂多配合物的合成及其结构表征   总被引:3,自引:0,他引:3  
本文报道了八种新化合物α2-M7-mHm[P2W17NbO62].xH2O, α-1, 2,3-M9-mHm[P2W15Nb3O62].xH2O (M=K, TMA, TEA, TBA)的合成和表征。红外和紫外光谱表明两种阴离子具有Dawson结构, ^3^1P和^1^8^3W NMR测定结果表明铌原子确系"极位"一、三取代。α-1, 2,3-K7H2[P2W15Nb3O62].30H2O为六方晶系, 晶胞参数为: a=1.9836(4), b=1.9836(9), c=1.5498(6)nm, α=β=90°, γ=120°。此外, 还报道了极谱、XPS和XRD结果。  相似文献   

11.
The synthesis and the crystal structure of the first compound containing Nb(3) triangular clusters bonded to fluorine ligands are presented in this work. The structure of Nb(3)IF(7)L(NbL(2))(0.25) with L = O and F, determined by single-crystal X-ray diffraction, is based on a Nb(3)I(i)F(i)(3)F(a)(8)L(a) unit and a NbL(6) octahedron (tetragonal, space group I4/m, a = 13.8638(3) A, c = 8.9183(2) A, V = 1714.14(7) A(3), Z = 8). Two crystallographic positions (noted L5 and L6) are randomly occupied by fluorine and oxygen with two different F:O occupancies. These L ligands build an octahedral site for a single niobium atom, located between the units. The four L5 ligands of the NbL(6) octahedron are shared with four Nb(3) cluster units, while the two other L6 ligands are terminal. The Nb(3) cluster is face-capped by one iodine and edge-bridged by three fluorine ligands. Two of the three niobium atoms constituting the cluster are bonded to three additional apical fluorine ligands, while the third one is bonded to two fluorines and one L5 ligand. The Nb(3) cluster is linked to six adjacent ones via all the apical fluorine ligands. The developed formula of the unit is therefore Nb(3)I(i)F(i)(3)F(a)(-)(a)(8/2)L(a) according to the Sch?fer and Schnering notation. The oxidation state of the single niobium and the random distribution of fluorine and oxygen on the two L sites will be discussed on the basis of structural analysis, the bond valence method, and IR and EPR measurements. The structural results will be compared to those of previously reported niobium compounds containing NbF(6) or Nb(F,O)(6) octahedra.  相似文献   

12.
Two isostructural inorganic-organic hybrid M(II)–Nb(V) oxyfluorides, namely, M(H2O)2(pyz)NbOF5 (M=Co 1, Cu 2; pyz=pyrazine) have been hydrothermally synthesized and structurally characterized. Both compounds possess two-dimensional layer structure constructed by neutral M(H2O)2NbOF5 chains inter-connected via bridging pyrazine ligands. The structure is further extended into three-dimensional supramolecular architecture through inter-layer H-bonding interactions between the coordinated water molecules and fluorine ions. The luminescent properties and thermal stability of both compounds have been investigated.  相似文献   

13.
铌取代型杂多钨酸盐的合成、表征、生物活性及晶体结构   总被引:3,自引:0,他引:3  
合成了铌、过氧化铌取代的钨硅、钨锗杂多配合物M  相似文献   

14.
用高温固相反应法合成了铌酸根NbO^3-4和Eu^3 共掺杂的正钽酸盐化合物Y1-xEuxTa1-yNbyO4,研究该体系中紫外光和X射线激发下的发光性能,研究表明,在紫外光激发下,YTaO4:Nb,Eu是一种比较有效的红色发光材料,激发能可以通过NbO^3 4离子传递给Eu^3 ,随钽酸盐中NbO^3-4基团浓度的增中,化合物的结构从M'型YTaO4变成褐钇铌型YNbO4结构,它的发光性质也随之改变。  相似文献   

15.
Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO(7) decahedra and NbO(6) octahedra in the reactant Nb(2)O(5), yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb(2)O(5) powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na(2)Nb(2)O(6).(2)/(3)H(2)O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO(3) cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb(2)O(5). This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO(6) octahedra, and then the microporous fibers crystallize and grow by assembling NbO(6) octahedra or clusters of NbO(6) octahedra and NaO(6) units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.  相似文献   

16.
A new six-layer perovskite-related structure Ba 6Na 2Nb 2M 2O 17 (M = P, V), which consists of cubic (c) BaO 3 layers and oxygen-deficient pseudocubic (c') BaO 2 layers stacked in the sequence c'ccccc, is presented. In Ba 6Na 2Nb 2M 2O 17, two-dimensional slabs of the well-known 2:1 octahedral cation-ordered perovskite motif are isolated between layers of tetrahedral units formed by anion vacancy ordering: two consecutive NbO 6 octahedral layers are sandwiched by two single NaO 6 octahedral layers, which, in turn, connect with two isolated MO 4 tetrahedral layers. Both oxides are derived from the 2:1 ordered perovskite structure (e.g., Ba 3ZnTa 2O 9) by ordered removal of O atoms in every sixth BaO 3 layer. Both materials exhibit a relative permittivity of approximately 20-23, Q x f 0 values of approximately 7800-10600 GHz, and negative temperature coefficients of the resonant frequency of approximately -23 to -7 ppm/ degrees C.  相似文献   

17.
We demonstrate a new approach to synthesizing high-activity electrocatalysts for the O(2) reduction reaction with ultra low Pt content. The synthesis involves placing a small amount of Pt, the equivalent of a monolayer, on carbon-supported niobium oxide nanoparticles (NbO(2) or Nb(2)O(5)). Rotating disk electrode measurements show that the Pt/NbO(2)/C electrocatalyst has three times higher Pt mass activity for the O(2) reduction reaction than a commercial Pt/C electrocatalyst. The observed high activity of the Pt deposit is attributed to the reduced OH adsorption caused by lateral repulsion between PtOH and oxide surface species. The new electrocatalyst also exhibits improved stability against Pt dissolution under a potential cycling regime (30,000 cycles from 0.6 V to 1.1 V). These findings demonstrate that niobium-oxide (NbO(2)) nanoparticles can be adequate supports for Pt and facilitate further reducing the noble metal content in electrocatalysts for the oxygen reduction reaction.  相似文献   

18.
PreparationandCrystalStructureofPrNb_5O_(14)¥MaoJiang-Gao;ZhuangHong-Hui;HuangJin-Shun(StateKeyLaboratoryofStructuralChemistry...  相似文献   

19.
Star gazing: The six-coordinate organoniobium(V) compound [NBu(4) ](2) [NbO(C(6) F(5) )(5) ] has been found to exhibit a pentagonal-pyramidal (PPY-6) structure, which is unprecedented in organotransition-metal chemistry (see picture: complex as viewed down the O-Nb axis; C in gray, O in red, F in yellow, and Nb in blue).  相似文献   

20.
Two new compounds, LiBi4Nb3O14 and LiBi4Ta3O14, have been synthesized by the solid-state method, using Li2CO3, Bi2O3, and M2O5 (M = Nb, Ta) in stoichiometric quantities. These compounds crystallize in the monoclinic C2/c space group with a = 13.035(3) A, b = 7.647(2) A, c = 12.217(3) A, beta = 101.512(4) degrees , V = 1193.4(5) A3 , and Z = 4 and a = 13.016(2) A, b = 7.583(1) A, c = 12.226(2) A, beta = 101.477(3) degrees , V = 1182.6(5) A3, and Z = 4, respectively. These are isostructural and the structure along the b axis consists of layers of [Bi2O2]2+ units separated by layers of LiO4 tetrahedra and NbO6 octahedra hence depicting an unusual variation in the Aurivillius phase isolated for the first time. The presence of lithium has been confirmed by 7Li NMR studies. ac impedance measurements and variable temperature (7)Li NMR studies indicate oxygen ion conductivity in these materials. The UV-visible spectra suggest a band gap of 3.0 eV for LiBi4Nb3O14 and 3.5 eV for LiBi4Ta3O14, respectively, and the associated studies on degradation of dyes and phenols render these materials suitable for photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号