首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Ito M  Nakamura M 《Faraday discussions》2002,(121):71-84; discussion 97-127
Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.  相似文献   

2.
The photoassisted mineralization, i.e., conversion to CO2 and water, of malonic acid over P25 TiO2 was investigated by in situ attenuated total reflection infrared (ATR-IR) spectroscopy in a small volume flow-through cell. Reassignment of the vibrational bands of adsorbed malonic acid, assisted by deuterium labeling, reveals two dissimilar carboxylate groups within the molecule. This indicates adsorption via both carboxylate groups, one in a bridging or bidentate and the other in monodentate coordination. During irradiation the coverage of malonic acid strongly decreases, and oxalate is observed on the surface in at least two different adsorption modes. The major oxalate species observed during irradiation is characterized by monodentate coordination of both carboxylate groups. In the dark, however, part of these species adopts another adsorption mode, possibly interacting only with one carboxylate group. During band gap illumination a large fraction of the surface is not covered by acid. Oxalate is a major intermediate in the mineralization of malonic acid. However, the observed transient kinetics of adsorbed malonic and oxalic acid indicates additional pathways not involving oxalate. The rate constant for oxalate decomposition is slightly larger than the one for oxalate formation from malonic acid. As the oxalate is desorbing slowly from the surface its concentration in the liquid phase is small, despite the fact that it is a major intermediate in the mineralization of malonic acid.  相似文献   

3.
(S)-Cysteine has been deposited on a Cu110 surface from sublimation of a crystalline phase. The surface was characterized by Fourier transform reflection absorption infrared spectroscopy (FT-RAIRS) during exposure and compared to the same copper surface after immersion into cysteine solutions at various pH values. X-ray photoelectron spectroscopy (XPS) measurements provided a chemical characterization of the surface at certain stages. The combination of these two techniques highlighted the importance of the cysteine "source" for the adsorbed form of the molecules and the mode of interaction. The zwitterionic amino acid was found to be predominant after adsorption at pH values close to the isoelectric point (IEP) of the molecule but also when the layer was formed in the vapor phase. This state was very sensitive to the atmosphere, contained an excess of hydroxyls, and/or underwent reduction into the anionic form when in contact with water or air. Weakly bound cysteine or cystine molecules, formed in the adsorbed phase, were considered to explain the average thickness of the adsorbed layer that was close to 20 A. As expected, immersion in very acidic or very basic solutions led to cationic and anionic forms, respectively.  相似文献   

4.
应用表面增强红外吸收光谱法、循环伏安法和微分电容法研究了0.1 mol•L-1 KClO4和0.1 mol•L-1 KCl碱性化溶液(pH 10)中, 异烟酸(INA)在Au电极表面的吸附取向和结构. 结果表明: -0.5~0.2 V (vs. SCE)间INA阴离子(INA)通过其羧酸根上的两个氧原子垂直吸附在Au电极表面; 特性吸附Cl对上述吸附结构无实质影响. 进一步的表面增强拉曼光谱的测试表明即使在-0.8~-0.5 V, 极少量吸附的INA很可能仍维持上述基本构型.  相似文献   

5.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

6.
Temperature-programmed reaction/desorption, reflection-absorption infrared spectroscopy, and density functional theory calculations have been employed to investigate the adsorption and thermal reactions of ClCH2CH2OH on clean and oxygen-precovered Cu(100) surfaces. On Cu(100), ClCH2CH2OH is mainly adsorbed reversibly. The ClCH2CH2OH molecules at a submonolayer coverage can change their orientation with increasing temperature. However, on oxygen-precovered Cu(100), all of the adsorbed ClCH2CH2OH molecules below 0.5 langmuir exposures completely dissociate to generate ethylene and acetaldehyde via the intermediate of ClCH2CH2O-. The computational studies predict that the ClCH2CH2O- is most likely to be adsorbed at the 4-fold hollow sites of Cu(100), with its C-O bond only slightly titled away from the surface normal and with a gauche conformation with respect to the C-C bond. The hollow-site ClCH2CH2O- has an adsorption energy that is 4.4 and 19.2 kcal x mol(-1) lower than that of the ClCH2CH2O- bonded at the bridging and atop sites, respectively. No significant effect of precovered oxygen on the ClCH2CH2O- bonding geometry and infrared band frequencies has been observed, as compared with the case without oxygen.  相似文献   

7.
In this paper, we studied the kinetics of the adsorption of poly(methyl methacrylate), PMMA, onto native aluminum oxide surfaces by X-ray photoelectron spectroscopy and reflection-absorption infrared spectroscopy, with the intent of tracking the various changes observed in the infrared spectrum of the adsorbed polymer layer as a function of adsorption time. Specifically, we utilized the relative changes in the absorption bands of the carbonyl, carboxylic acid, and carboxylate groups to determine the sequence of events that culminate in the formation of bonds between carboxylate groups on hydrolyzed PMMA and specific sites on the aluminum oxide surface. We have shown that the adsorption process involves the hydrolysis of a fraction of the methoxy groups of the PMMA to generate COOH groups. Unlike previous assumptions, the formation of COOH groups on the PMMA chains does not constitute a sufficient condition for the actual chemisorption of the polymer chains onto the metal oxide surface. To promote bonding, the acid groups must undergo dissociation to form the carboxylate groups, followed subsequently by actual bond formation, that is, active anchoring, on the surface. This process is mediated by the aluminum oxide sites on the surface in the presence of water. Hence, the adsorption process occurs via a two-step mechanism, in which the first step, that is, the hydrolysis step, is a necessary but insufficient condition and the second step, that is, the anchoring step, is largely dependent on the type of interfacial chemistry possible for a particular polymer-metal oxide surface, the polymer conformation, the molecular weight, and the flexibility of the adsorbing molecules.  相似文献   

8.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

9.
The chiral molecule (R,R)-tartaric acid adsorbed on nickel surfaces creates highly enantioselective heterogeneous catalysts, but the nature of chiral modification remains unknown. Here, we report on the behavior of this chiral molecule with a defined Ni(110) surface. A combination of reflection absorption infrared spectroscopy, scanning tunneling microscopy, and periodic density functional theory calculations reveals a new mode of chiral induction. At room temperatures and low coverages, (R,R)-tartaric acid is adsorbed in its bitartrate form with two-point bonding to the surface via both carboxylate groups. The molecule is preferentially located above the 4-fold hollow site with each carboxylate functionality adsorbed at the short bridge site via O atoms placed above adjacent Ni atoms. However, repulsive interactions between the chiral OH groups of the molecule and the metal atoms lead to severely strained adsorption on the bulk-truncation Ni(110) surface. As a result, the most stable adsorption structure is one in which this adsorption-induced stress is alleviated by significant relaxation of surface metal atoms so that a long distance of 7.47 A between pairs of Ni atoms can be accommodated at the surface. Interestingly, this leads the bonding Ni atoms to describe a chiral footprint at the surface for which all local mirror symmetry planes are destroyed. Calculations show only one chiral footprint to be favored by the (R,R)-tartaric acid, with the mirror adsorption site being unstable by 6 kJ mol(-1). This energy difference is sufficient to enable the same local chiral reconstruction and motif to be sustained over 90% of the system, leading to an overall highly chiral metal surface.  相似文献   

10.
Attenuated total reflectance infrared (ATR-IR) spectroscopy was employed to quantitatively evaluate the dissociation states (di-cationic, cationic, zwitterionic, and anionic) of lysine adsorbed on amorphous silica. To determine the relationship between the ATR-IR spectra and each dissociation state, we first measured pH-induced spectral changes of dissolved lysine and correlated these changes with the thermodynamically calculated dissociation states of lysine. This procedure yielded calibration curves with good linearity; we used these curves for the quantitative analysis of adsorbed lysine. Our analysis revealed that 81+/-5% of the lysine adsorbed on amorphous silica was present in a cationic state and 19+/-5% was in a zwitterionic state; these percentages remained mostly unchanged over the whole range of pH values tested (pH = 7.1-9.8). We interpret the values obtained to indicate that lysine adsorption is mainly driven by electrostatic interaction with the negatively charged silica surface (SiO(-)...Lys(+), SiO(-)...Lys(+/-)).  相似文献   

11.
A systematic study of oxygen adsorption, decomposition and diffusion on Rh111 and its dependence on coadsorbed oxygen molecules has been performed using density functional theory calculations. First, the bonding strength between metal surface and adsorbed oxygen molecules has been studied as a function of initial oxygen coverage. The bonding strength decreases with increasing oxygen coverage, which points towards a self-inhibition of the adsorption process. The potential energy hypersurface (PES) for the dissociation of oxygen molecules adsorbed on a threefold fcc position perpendicular to the surface was calculated using a combined linear/quadratic synchronous transit method with conjugate gradient refinements. The results indicate that a minor amount of oxygen on the surface enhances the decomposition of further oxygen molecules, while this process is inhibited at higher coverage. Moreover, PES calculations of a single site jump of atomic oxygen on rhodium 111 indicate that the activation energy increases as well with increasing oxygen coverage. All results are discussed with respect to a rhodium based catalytic NOx reduction/decomposition system proposed by Nakatsuji, which decomposes nitrogen oxides in oxygen excess.  相似文献   

12.
The interaction of methanol (MeOH) with amorphous solid water (ASW) composed of D2O molecules, prepared at 125 K on a polycrystalline Ag substrate, was studied with metastable-impact-electron spectroscopy, reflection-absorption infrared spectroscopy, and temperature-programmed desorption mass spectroscopy. In connection with the experiments, classical molecular dynamics (MD) simulations have been performed on a single CH3OH molecule adsorbed at the ice surface (T=190 K), providing further insights into the binding and adsorption properties of the molecule at the ice surface. Consistently with the experimental deductions and previous studies, MeOH is found to adsorb with the hydroxyl group pointing toward dangling bonds of the ice surface, the CH3 group being oriented upwards, slightly tilted with respect to the surface normal. It forms the toplayer up to the onset of the simultaneous desorption of D2O and MeOH. At low coverage the adsorption is dominated by the formation of two strong hydrogen bonds as evidenced by the MD results. During the buildup of the first methanol layer on top of an ASW film the MeOH-MeOH interaction via hydrogen-bond formation becomes of importance as well. The interaction of D2O with solid methanol films and the codeposition of MeOH and D2O were also investigated experimentally; these experiments showed that D2O molecules supplied to a solid methanol film become embedded into the film.  相似文献   

13.
The adsorption of salicylaldoxime from aqueous solution by malachite has been studied and the nature of the adsorbed species has been determined by infrared spectroscopy. At low surface coverage, a basic salt is observed whereas the bis-salicylaldoximato-copper II complex is formed when tridimensional condensation of the adsorbate occurs on the surface. At this stage the surface becomes hydrophobic allowing the mineral to be floated. The kinetics of the adsorption process is first order with respect to the salicylaldoxime concentration. The mechanism of this process is discussed in the light of the spectroscopic results.  相似文献   

14.
Mechanism of selective oxygen reduction on platinum by 2,2'-bipyridine in the presence of methanol has been investigated by in situ surface-enhanced infrared absorption spectroscopy. The addition of 2,2'-bipyridine caused the decrease of adsorbed water molecules and those existing near the surface of platinum. The formation of both CO and formate, the latter being the intermediate in the non-CO path for methanol oxidation, depressed in the presence of 2,2'-bipyridine, suggests that 2,2'-bipyridine hinders methanol oxidation via both non-CO and CO paths on platinum. The geometrical effect of 2,2'-bipyridine adsorbed onto platinum was also investigated by multisite Monte Carlo simulation. It is indicated that selective oxygen reduction is caused by the difference in the number of required adsorption sites between methanol and dioxygen molecules. The suppression of Pt oxide species by 2,2'-bipyridine is found to be another factor that enhances the oxygen reduction.  相似文献   

15.
Methanol adsorption on beta-Ga2O3 surface has been studied by Fourier transform infrared spectroscopy (FTIR) and by means of density functional theory (DFT) cluster model calculations. Adsorption sites of tetrahedral and octahedral gallium ions with different numbers of oxygen vacancies have been compared. The electronic properties of the adsorbed molecules have been monitored by computing adsorption energies, optimized geometry parameters, overlap populations, atomic charges, and vibrational frequencies. The gallia-methanol interaction has different behaviors according to the local surface chemical composition. The calculations show that methanol can react in three different ways with the gallia surface giving rise to a nondissociative adsorption, a dissociative adsorption, and an oxidative decomposition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The molecule is nondissociatively adsorbed by means of a hydrogen bond between the alcoholic hydrogen atom and a surface oxygen atom and a bond between the alcoholic oxygen atom and a surface gallium atom. Two neighbor oxygen vacancies on tetrahedral gallium sites produce the dissociation of the methanol molecule and the formation of a bridge bond between two surface gallium atoms and the methoxy group.  相似文献   

16.
一氧化碳共吸附法确定叔丁胺分子在Cu(111)表面的吸附位   总被引:1,自引:0,他引:1  
采用扫描隧道显微镜(STM)和密度泛函理论(DFT)研究了78 K时单个叔丁胺分子在Cu(111)表面的吸附位. 我们提出以共吸附的一氧化碳√3 ×√3 超结构为基底铜原子的标识方法, 确定了低覆盖度的叔丁胺分子在Cu(111)表面的吸附位为顶位. 而采用单个一氧化碳分子标识基底铜原子的位置, 同样得出了叔丁胺分子的吸附位为顶位. 此外, 还采用DFT计算叔丁胺分子在Cu(111)表面的优势吸附构型. 理论计算结果表明顶位吸附构型为能量最稳定的构型, 与实验结果相吻合.  相似文献   

17.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

18.
The adsorption and reaction of methanethiol (CH3SH) and dimethyl disulfide (CH3SSCH3) on Mo(110)-(1 x 6)-O have been studied using temperature-programmed reaction spectroscopy and reflection-absorption infrared spectroscopy over the temperature range of 110-550 K. The S-H bond is broken upon adsorption to form adsorbed OH, water, and methyl thiolate (CH3S-) at low temperature. Water is evolved at 210 and 310 K via molecular desorption and disproportionation of OH, respectively. Some hydroxyl remains on the surface up to 350 K. Methyl thiolate is also formed from CH3SSCH3 on Mo(110)-(1 x 6)-O. Methyl thiolate undergoes C-S cleavage above 300 K, yielding methane and methyl radicals. There is also a minor amount of nonselective decomposition leading to the formation of carbon and hydrogen. Methane production is promoted by adsorbed hydroxyl. As the hydroxyl coverage increases, the yield of methyl radicals relative to methane diminishes. Accordingly, there is more methane produced from methanethiol reaction than from dimethyl disulfide, since S-H dissociation in CH3SH produces OH. The maximum coverage of the thiolate is approximately 0.5 monolayers, based on the amount of sulfur remaining after reaction measured by Auger electron spectroscopy. In contrast to cyclopropylmethanethiol (c-C3H5CH2SH), for which alkyl transfer from sulfur to oxygen is observed, there is no evidence for transfer of the methyl group of methyl thiolate to oxygen on the surface. Specifically, there is no evidence for methoxy (CH3O-) in infrared spectroscopy or temperature-programmed reaction experiments.  相似文献   

19.
The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.  相似文献   

20.
The adsorption of lignin on cellulose fibres at neutral pH and the effects of calcium ions and a cationic polyelectrolyte (PDADMAC) on the adsorption have been studied. The surface coverage by lignin was determined by electron spectroscopy for chemical analysis (ESCA). The morphology of the lignin layer was studied by atomic force microscopy (AFM). The effect of adsorbed polyelectrolyte and lignin on the strength properties of the paper was also studied. The adsorbed amount of lignin increased monotonically with lignin concentration. Addition of calcium ions resulted in a very high surface coverage by lignin. PDADMAC did not enhance the adsorption of lignin, but without addition of polyelectrolyte the lignin was very weakly attached to the fibre surface. PDADMAC formed complexes with lignin in solution. At high polymer/lignin concentration ratios the charge of the complex was positive and it adsorbed irreversibly as large blobs. At low ratios the complex was easily washed away from the fibre surface. When PDADMAC was pre-adsorbed on the fibre surface the lignin adsorbed as small granules at all lignin concentrations. Neither PDADMAC nor lignin alone increased the strength of pulp sheets significantly. However, together they increased the bonding between fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号