首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vapor-phase fluorescence spectra have been measured for pyrene and its simple derivatives, i.e., pyrene-d10, 1-methylpyrene, and 4-methylpyrene. Each of these derivatives shows a weak fluorescence emission which is similar to the fluorescence from the second excited singlet state (S2) of pyrene and is to be assigned to the S2-fluorescence. The methyl substitution causes frequency shifts (Δν) in both absorption and fluorescence, and the Δν values for absorption and fluorescence transitions that are associated with the same excited state, i.e., the first excited singlet state (S1) or the second excited singlet state (S2), are approximately equal to each other. When the excitation energy increases, the S2-fluorescence shifts gradually to the red in almost the same way as the S1-fluorescence. The S2-fluorescence spectrum has a sort of mirror-image relation to the S2-absorption. A comparison of S2-emissions of pyrene and pyrene-d10 suggests that the ratio between the quantum yields of S2- and S1-fluorescence may be related to a ratio ?2?1, where ?1 and ?2 are the densities of vibrational states in S1 and S2 at the energy of excitation.  相似文献   

2.
In the current work, dependent density functional theory and time‐dependent density functional theory calculations coupled with the inherent charge hopping model and some visualization techniques have been used to systematically investigate the photovoltaic properties of PC61BM‐PDPP5T system. Calculations show that PC61BM‐PDPP5T system possesses the relatively large open‐circuit voltage 0.82 V the middle‐sized exciton binding energy (0.690 eV), the small internal reorganization energy (0.159 eV) in the exciton‐dissociation process, but the relatively large one (0.396 eV) in the case of charge‐recombination. With a simplified molecular model, the exciton‐dissociation rate constant, kdis, is estimated to be as large as 1.156 × 1010 s?1 in PC61BM‐PDPP5T phase interface, while the charge‐recombination one, krec, is only 1.018 × 107 s?1 under the same condition, which indicates a rapid and efficient photoinduced exciton‐dissociation process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The pressure shift of the optical absorption edge (dEg/dp = (1.1 ± 0.1) × 10?6 eV bar?1) and the compressibility (κ = (1.3 ± 0.) × 10?6 bar?1) of single crystalline CdCr2Se4 have been measured at ambient temperature. These data suggest an interpretation of the fundamental absorption in terms of either pp interband or p → localized d charge transfer transitions, but exclude excitations involving s-band states.  相似文献   

4.
We present measurements of ZnO exciton peak energies, E0, at pressures up to 107.3 kbar. Smoke samples consisting of randomly oriented single crystal particles were prepared by oxidizing metallic zinc in air and were collected on one diamond face of a Merrill-Bassett pressure cell. Pressures were measured by the ruby fluorescence technique. In the pressure range between 5 and 90 kbar, our results indicate a consistent linear dependence with dE0/dP = 2.33 × 10?3 eV kbar?1 for both increasing and decreasing pressures. A mixed phase structure is suggested by the observed irregular peak shapes and measured pressure dependence for the sample that had been taken beyond ? 90 kbar where the transformation to the NaCl structure has been reported.  相似文献   

5.
The charge exchange and excitation cross sections at collisions of alphas with O4+(1s 22s 2) impurity atoms in a hot plasma for striking energies E c varying from 20 keV to 2 MeV are determined for the first time. The cross sections are calculated using the method of close-coupling equations with 13 singlet four-electron quasi-molecular states taken as a basis. The partial cross sections of charge transfer to the 1s, 2s, and 2p states of a He+ ion and for O4+(1s 22s 2) → O4+(1s 22lnl’) (n = 2, 3) electronic excitation of an oxygen ion are found. The maximal value of the charge exchange total cross section roughly equals 2.2 × 10?16 cm2 at E c ≈ 0.7 MeV. The excitation total cross section has a maximum of ≈ 7.7 × 10?16 cm2 at E c ≈ 80 keV for single-electron excitation and ≈6.5 × 10?16 cm2 at E c ≈ 0.7 MeV for two-electron excitation.  相似文献   

6.
Changes in the binding energy and oscillator strength of an exciton state due to screening by a quasi-two-dimensional electron gas were calculated self-consistently in a nonlinear approximation. It was shown that the collapse of the bound state proceeds at very small concentrations N s ?5×109 cm?2, which is a consequence of taking into account the nonlinearity of the system response to the Coulomb perturbation.  相似文献   

7.
The “exciton gas-plasma” transition (the Mott transition) in a Si0.93Ge0.07/Si thin quantum well is investigated using low-temperature photoluminescence. It is demonstrated that this transition is smooth and occurs in the concentration range from approximately 6 × 1010 to 1.2 × 1012 cm?2. At a temperature of 23 K and excitation densities of higher than 10 W/cm2, the shape and location of the luminescence line associated with the electron-hole plasma remain unchanged with an increase in the pump density. This can indicate the occurrence of an “electron-hole gas-liquid” transition. It is shown that, in the spectrum of the quantum well, the luminescence of boron-bound excitons dominates at liquid-helium temperatures and low excitation densities, whereas the free-exciton luminescence dominates at temperatures above 10 K. The influence of the homogeneous and inhomogeneous broadening on the electron-hole plasma and exciton luminescence is discussed.  相似文献   

8.
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215–250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame (φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2–8×10?6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10?6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.  相似文献   

9.
The fluorescence quenching by oxygen of vapors of nine polycyclic aromatic hydrocarbons with strongly different oxidation potentials 0.44 eV < E ox < 1.61 eV (anthracene, 9-methylanthracene, 2-aminoanthracene, 9,10-dibromanthracene, pyrene, chrysene, phenanthrene, fluoranthene, and carbazole) is studied. From the dependences of the fluorescence decay rates and intensities on the oxygen pressure P O2, the quenching rate constants k S O2 for the excited singlet states S 1 and the fraction f S O2 of the S 1 states quenched by oxygen are estimated. At P O2 = 5 Torr, the k S O2 constants vary from 1.2 × 107 to 3.0 × 105 s?1 Torr?1, while the fraction of the quenched excited singlet states changes from 0.1 (fluoranthene) to 0.7 (chrysene) and 0.8 (pyrene). The dependences of k S O2 on the photophysical and electron-donor characteristics of the fluorescing compounds are analyzed. It is shown that, in the gas phase of anthracene and its derivatives, the magnitudes of k S O2 are limited by the rate constants of gas-kinetic collisions k gk and do not depend on the electron-donor characteristics of fluorophores, while the fraction of quenched states f S O2 changes with the oxidation potential. For compounds with k S O2 < k gk, both the rate constants k S O2 and the fraction of quenched states f S O2 depend on the E ox of sensitizers, which demonstrates an important role played by the charge-transfer interactions in quenching of the S 1 states. The dependence of the rate constants k S O2 on the free energy of electron transfer ΔG et is considered.  相似文献   

10.
This is the first report of inactivation of xyloglucanase from Thermomonospora sp by pepstatin A, a specific inhibitor towards aspartic proteases. The steady state kinetics revealed a reversible, competitive, two-step inhibition mechanism with IC 50 and K i values of 3.5?±?0.5 μM and 1.25?±?0.5 μM respectively. The rate constants determined for the isomerization of EI to EI* and the dissociation of EI* were 14.5?±?1.5?×?10?5?s?1 and 2.85?±?1.2?×?10?8?s?1 respectively, whereas the overall inhibition constant K i * was 27?±?1 nM. The conformational changes induced upon inhibitor binding to xyloglucanase were monitored by fluorescence analysis and the rate constants derived were in agreement with the kinetic data. The abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled xyloglucanase and far UV analysis suggested that pepstatin binds to the active site of the enzyme. Our results revealed that the inactivation of xyloglucanase is due to the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis.  相似文献   

11.
Early stages of formation of few-atom clusters of photolytic silver in AgBr nanocrystals are studied using the pulsed dephotolysis technique. It is shown that dephotolysis is characterized by a clearly pronounced dependence on the pulse duration of nonactinic and actinic radiations, the highest efficiency of dephotolysis being achieved for nanosecond pulses. The rate constant of recombination of free electrons with captured holes is determined (κp = (6 ± 1) × 10?9 cm3 s?1) and the dependence of the recombination rate on the level of excitation is found. The maximum recombination rate for the highest excitation level is found to be V p max = 109 s?1 and the surface concentration of recombination centers is determined to be N r = (2 ± 0.5) × 1011 cm?2.  相似文献   

12.
The photophysical properties such as electronic absorption, molar absorptivity, emission spectra, fluorescence quantum yield and fluorescence lifetime of N,N′-bis(4-pyridyl)-3,4:9,10-perylene bis(dicarboximide) (BPPD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield (?f) is solvent dependent. The ground state geometry has been computed by using density functional theory (DFT), the transition from HOMO to LUMO from perylene core with maximum absorption at 512 nm and HOMO–LUMO energy difference equal 2.53 eV. BPPD dye undergoes molecular aggregation to dimmer or higher aggregates in dimethyl sulfoxide (DMSO). Crystalline solids of BPPD gives excimer-like emission at 676 nm. The fluorescence quenching of BPPD is also studied using hydrated ferric oxide nanoparticle (FeOOH), and the Stern–Volmer rate constants (Ksv) were calculated as 8×106 and 9.2×106 M?1 in ethanol and ethylene glycol, respectively.  相似文献   

13.
This study examines the oxygen diffusion into polystyrene (PS) latex/multiwalled carbon nanotube (MWNT) nanocomposite films (PS/MWNT) consisting of various amounts of MWNT via steady state fluorescence technique (SSF). PS/MWNT films were prepared from the mixture of MWNT and pyrene (P)-labeled PS latexes at various compositions at room temperature. These films were then annealed at 170 °C above glass transition (Tg) temperature of PS. Fluorescence quenching measurements were performed for each film separately to evaluate the effect of MWNT content on oxygen diffusion. The Stern-Volmer equation for fluorescence quenching is combined with Fick’s law for diffusion to derive the mathematical expressions. Diffusion coefficients (D) were produced and found to be increased from 1.1?×?10?12 to 41?×?10?12 cm2s?1 with increasing MWNT content. This increase was explained via the existence of large amounts of pores in composite films which facilitate oxygen penetration into the structure.  相似文献   

14.
The dielectric, optical and non-linear optical properties of Ba6Ti2Nb8O30 single crystals were examined from room temperature up to the Curie temperature of 245°C. The spontaneous polarization at room temperature was estimated as 0·22±0·01 C/m2. The linear electrooptic constants were measured as r33T=(1·17±0·02)×10?10 and r13T=(0·42±0·01)×10?10 m/V. The non-linear optical coefficients were d33=(15·1±2·0)×10?12 and d31=(11·0±2·0)×10?12 m/V, which are comparable to those of Ba4Na2Nb10O30. Temperature dependences of δ33 and δ31 (Miller's δ) were found to be proportional to that of Ps.  相似文献   

15.
The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4f-5d transitions in the range (56–78) × 10?3 cm?1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50–56) × 10?3 cm?1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34–82) × 10?3 cm?1 at 300 K for different crystal orientations.  相似文献   

16.
The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm?1 < E T < 24500 cm?1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s?1 Torr?1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.  相似文献   

17.
Integral yields of spontaneous emission at wavelengths of 1.73, 2.03, and 2.65 μm have been measured upon excitation of pure xenon by a pulsed electron beam. These yields have been analyzed and experimental data have been obtained on time constants of radiative transitions 5d[3/2]1 → 6p[5/2]2, 5d[3/2]1 → 6p[3/2]1, and 5d[3/2]1 → 6p[1/2]0 of XeI, which appeared to be equal to (2300 ± 400) × 10?9, (300 ± 40) × 10?9, and (1300 ± 200) × 10?9 s, respectively. It is shown that the experimental data are in a qualitative agreement with the results of computational and theoretical investigations. The results of averaging the experimental and calculated data are proposed for use as recommended values of the corresponding constants.  相似文献   

18.
The transition probabilities of two Ar(I) lines and one Ar(II) line have been measured in emission on wall-stabilized argon arc plasmas (0·5×105?p, Nm-2?3×105; 10,000?T, K?20,000; 1022?Ne, m-3?5×1023) using the “method of best fit (MBF)”. The results (without line-wing correction) are for Ar(I) at 714·7 nm, Anm=5·66×105 s-1±5%; for Ar(I) at 430·0 nm, Anm=3·40×105 s-1±5%; for Ar(II) at 480·6 nm, Anm=8·82×107 s-1±7%. These values were not influenced by deviations from LTE, which have been observed at electron number densities ne?1023 m-3. The small uncertainties were achieved after careful corrections of different sources of error.  相似文献   

19.
From the fluorescence excitation spectrum the rate bET at which anthracene singlet excitons are quenched at a gold layer is determined. The distance between the anthracene crystal surface and the metal layer is varied by means of fatty acid monolayer assemblies. The bET is found to follow a d-3-law, the proportionality constant being β = (10.3 ± 2.0) × 10-18 cm3. This confirms the applicability of the theory by Chance et al. predicting bET = 12.7 × 10-18d-3.  相似文献   

20.
Fluorescence lifetimes of 33 alkanes were measured at 25°C using a 0.7 ns pulse radiolysis system and the relationship between molecular structure, fluorescence lifetime (τ), quantum yield (Φf) and radiative rate constant (R = Φfτ) is discussed. The τ's showed a large dependence on the molecular structure, however, the R-values were approximately constant for groups of alkanes: R = 1.3×106s?1 for n-alkanes, R ≈ 4×106 s?1 for aliphatic vicinally substituted dimethyl alkanes, R = 7×106s-1 for cyclohexane and alkylcyclohexanes, and R = 10×106s?1 for di- and trimethylcyclohexanes. The excited state lifetimes of some non-fluorescing alkanes were also determined from steady-state photolytic quenching data and found to be very low (? 0.3 ns).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号