首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We prove a Helly-type theorem for the family of all k-dimensional affine subsets of a Hilbert space H. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M,r) ({\cal M},\rho) into this family.¶Let F be such a mapping satisfying the following condition: for every subset M¢ ì M {\cal M'} \subset {\cal M} consisting of at most 2k+1 points, the restriction F|M F|_{\cal M'} of F to M¢ {\cal M'} has a selection fM (i.e. fM(x) ? F(x) for all x  ? M¢) f_{\cal M'}\,({\rm i.e.}\,f_{\cal M'}(x) \in F(x)\,{\rm for\,all}\,x\,\in {\cal M'}) satisfying the Lipschitz condition ||fM(x) - fM(y)||  £ r(x,y ), x,y ? M¢ \parallel f_{\cal M'}(x) - f_{\cal M'}(y)\parallel\,\le \rho(x,y ),\,x,y \in {\cal M'} . Then F has a Lipschitz selection f : M ? H f : {\cal M} \to H such that ||f(x) - f(y) ||  £ gr(x,y ), x,y ? M \parallel f(x) - f(y) \parallel\,\le \gamma \rho (x,y ),\,x,y \in {\cal M} where g = g(k) \gamma = \gamma(k) is a constant depending only on k. (The upper bound of the number of points in M¢ {\cal M'} , 2k+1, is sharp.)¶The proof is based on a geometrical construction which allows us to reduce the problem to an extension property of Lipschitz mappings defined on subsets of metric trees.  相似文献   

2.
Some oscillation criteria are established by the averaging technique for the second order neutral delay differential equation of Emden-Fowler type (a(t)x¢(t))¢+q1(t)| y(t-s1)|a sgn y(t-s1) +q2(t)| y(t-s2)|b sgn y(t-s2)=0,    t 3 t0,(a(t)x'(t))'+q_1(t)| y(t-\sigma_1)|^{\alpha}\,{\rm sgn}\,y(t-\sigma_1) +q_2(t)| y(t-\sigma_2)|^{\beta}\,{\rm sgn}\,y(t-\sigma_2)=0,\quad t \ge t_0, where x(t) = y(t) + p(t)y(t − τ), τ, σ1 and σ2 are nonnegative constants, α > 0, β > 0, and a, p, q 1, q2 ? C([t0, ¥), \Bbb R)q_2\in C([t_0, \infty), {\Bbb R}) . The results of this paper extend and improve some known results. In particular, two interesting examples that point out the importance of our theorems are also included.  相似文献   

3.
This paper is concerned with the following periodic Hamiltonian elliptic system
{l-Du+V(x)u=g(x,v) in  \mathbbRN,-Dv+V(x)v=f(x,u) in  \mathbbRN,u(x)? 0 and v(x)?0 as  |x|?¥,\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.  相似文献   

4.
Summary. We determine the general solution g:S? F g:S\to F of the d'Alembert equation¶¶g(x+y)+g(x+sy)=2g(x)g(y)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)g(y)\qquad (x,y\in S) ,¶the general solution g:S? G g:S\to G of the Jensen equation¶¶g(x+y)+g(x+sy)=2g(x)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)\qquad (x,y\in S) ,¶and the general solution g:S? H g:S\to H of the quadratic equation¶¶g(x+y)+g(x+sy)=2g(x)+2g(y)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)+2g(y)\qquad (x,y\in S) ,¶ where S is a commutative semigroup, F is a quadratically closed commutative field of characteristic different from 2, G is a 2-cancellative abelian group, H is an abelian group uniquely divisible by 2, and s \sigma is an endomorphism of S with s(s(x)) = x \sigma(\sigma(x)) = x .  相似文献   

5.
Some necessary and sufficient conditions for nonoscillation are established for the second order nonlinear differential equation (r(t)y(x(t))|x(t)|p-1x(t))+c(t)f(x(t))=0,    t 3 t0,(r(t)\psi(x(t))\vert x^{\prime}(t)\vert^{p-1}x^{\prime}(t))^{\prime}+c(t)f(x(t))=0,\quad t\ge t_0,  相似文献   

6.
It is well known that in every inverse semigroup the binary operation and the unary operation of inversion satisfy the following three identities:
x=(xx¢)x,       (xx¢)(yy)=(yy)(xx¢),       (xy)z=x(yz") .x=(xx')x, \qquad(xx')(y'y)=(y'y)(xx'), \qquad(xy)z=x(yz') .  相似文献   

7.
The following system considered in this paper:
x¢ = - e(t)x + f(t)fp*(y),        y¢ = - (p-1)g(t)fp(x) - (p-1)h(t)y,x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,  相似文献   

8.
Summary. Consider Wilson's functional equation¶¶f(xy) + f(xy-1) = 2f(f)g(y) f(xy) + f(xy^{-1}) = 2f(f)g(y) , for f,g : G ? K f,g : G \to K ¶where G is a group and K a field with char K 1 2 {\rm char}\, K\ne 2 .¶Aczél, Chung and Ng in 1989 have solved Wilson's equation, assuming that the function g satisfies Kannappan's condition g(xyz) = g(xzy) and f(xy) = f(yx) for all x,y,z ? G x,y,z\in G .¶In the present paper we obtain the general solution of Wilson's equation when G is a P3-group and we show that there exist solutions different of those obtained by Aczél, Chung and Ng.¶A group G is said to be a P3-group if the commutator subgroup G' of G, generated by all commutators [x,y] := x-1y-1xy, has the order one or two.  相似文献   

9.
In this paper, we study the existence of periodic solutions of Rayleigh equation
where f, g are continuous functions and p is a continuous and 2π-periodic function. We prove that the given equation has at least one 2π-periodic solution provided that f(x) is sublinear and the time map of equation x′′ + g(x) = 0 satisfies some nonresonant conditions. We also prove that this equation has at least one 2π-periodic solution provided that g(x) satisfies and f(x) satisfies sgn(x)(f(x) − p(t)) ≥ c, for tR, |x| ≥ d with c, d being positive constants.Received: July 1, 2002; revised: February 19, 2003Research supported by the National Natural Science Foundation of China, No.10001025 and No.10471099, Natural Science Foundation of Beijing, No. 1022003 and by a postdoctoral Grant of University of Torino, Italy.  相似文献   

10.
Using barrier strip type arguments we investigate the existence of solutions of the boundary value problem ${x''=f(t,x),\;t\in(0,1),\;x(0)=A,\;x'(1)=0,}Using barrier strip type arguments we investigate the existence of solutions of the boundary value problem x"=f(t,x),  t ? (0,1),  x(0)=A,  x¢(1)=0,{x'=f(t,x),\;t\in(0,1),\;x(0)=A,\;x'(1)=0,} where the scalar function f(t, x) may be singular at x = A.  相似文献   

11.
Consider j = f +[`(g)]\varphi = f + \overline {g}, where f and g are polynomials, and let TjT_{\varphi} be the Toeplitz operators with the symbol j\varphi. It is known that if TjT_{\varphi} is hyponormal then |f¢(z)|2 3 |g¢(z)|2|f'(z)|^{2} \geq |g'(z)|^{2} on the unit circle in the complex plane. In this paper, we show that it is also a necessary and sufficient condition under certain assumptions. Furthermore, we present some necessary conditions for the hyponormality of TjT_{\varphi} on the weighted Bergman space, which generalize the results of I. S. Hwang and J. Lee.  相似文献   

12.
We consider the Hill operator
Ly = - y¢¢ + v(x)y,    0 £ x £ p,Ly = - y^{\prime \prime} + v(x)y, \quad0 \leq x \leq \pi,  相似文献   

13.
Summary. Let F, Y \Phi, \Psi be strictly monotonic continuous functions, F,G be positive functions on an interval I and let n ? \Bbb N \{1} n \in {\Bbb N} \setminus \{1\} . The functional equation¶¶F-1 ([(?i=1nF(xi)F(xi))/(?i=1n F(xi)]) Y-1 ([(?i=1nY(xi)G(xi))/(?i=1n G(xi))])  (x1,?,xn ? I) \Phi^{-1}\,\left({\sum\limits_{i=1}^{n}\Phi(x_{i})F(x_{i})\over\sum\limits_{i=1}^{n} F(x_{i}}\right) \Psi^{-1}\,\left({\sum\limits_{i=1}^{n}\Psi(x_{i})G(x_{i})\over\sum\limits_{i=1}^{n} G(x_{i})}\right)\,\,(x_{1},\ldots,x_{n} \in I) ¶was solved by Bajraktarevi' [3] for a fixed n 3 3 n\ge 3 . Assuming that the functions involved are twice differentiable he proved that the above functional equation holds if and only if¶¶Y(x) = [(aF(x) + b)/(cF(x) + d)],       G(x) = kF(x)(cF(x) + d) \Psi(x) = {a\Phi(x)\,+\,b\over c\Phi(x)\,+\,d},\qquad G(x) = kF(x)(c\Phi(x) + d) ¶where a,b,c,d,k are arbitrary constants with k(c2+d2)(ad-bc) 1 0 k(c^2+d^2)(ad-bc)\ne 0 . Supposing the functional equation for all n = 2,3,... n = 2,3,\dots Aczél and Daróczy [2] obtained the same result without differentiability conditions.¶The case of fixed n = 2 is, as in many similar problems, much more difficult and allows considerably more solutions. Here we assume only that the same functional equation is satisfied for n = 2 and solve it under the supposition that the functions involved are six times differentiable. Our main tool is the deduction of a sixth order differential equation for the function j = F°Y-1 \varphi = \Phi\circ\Psi^{-1} . We get 32 new families of solutions.  相似文献   

14.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where V(x)  ~  |x|s, h(t)  ~  ts{V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m < p £ 1+(m-1)(1+s)+\frac2(s+1)+sn+l{m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if ${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

15.
Let f be a real analytic function defined in a neighborhood of 0 ? \Bbb Rn 0 \in {\Bbb R}^n such that f-1(0)={0} f^{-1}(0)=\{0\} . We describe the smallest possible exponents !, #, / for which we have the following estimates: |f(x)| 3 c|x|a |f(x)|\geq c|x|^{\alpha} , |grad f(x)| 3 c|x|b |{\rm grad}\,f(x)|\geq c|x|^{\beta} , |grad f(x)| 3 c|f(x)|q |{\rm grad}\,f(x)|\geq c|f(x)|^{\theta} for x near zero with c > 0 c > 0 . We prove that a = b+1 \alpha=\beta+1, q = b/a\theta=\beta/\alpha . Moreover b = N+a/b \beta=N+a/b where $ 0 h a < b h N^{n-1} $ 0 h a < b h N^{n-1} . If f is a polynomial then |f(x)| 3 c|x|(degf-1)n+1 |f(x)|\geq c|x|^{(\deg f-1)^n+1} in a small neighborhood of zero.  相似文献   

16.
Summary. Quite recently C. Alsina, P. Cruells and M. S. Tomás [2], motivated by F. Suzuki's property of isosceles trapezoids, have proposed the following orthogonality relation in a real normed linear space (X, ||·||) (X, \Vert \cdot \Vert) : two vectors x,y ? X x,y \in X are T-orthogonal whenever¶||z-x ||2 + ||z-y ||2 = ||z ||2 + ||z-(x+y) ||2 \Vert z-x \Vert^2 + \Vert z-y \Vert^2 = \Vert z \Vert^2 + \Vert z-(x+y) \Vert^2 ¶for every z ? X z \in X . A natural question arises whether an analogue of T-orthogonality may be defined in any real linear space (without a norm structure). Our proposal reads as follows. Given a functional j \varphi on a real linear space X we say that two vectors x,y ? X x,y \in X are j \varphi -orthogonal (and write x^jy x\perp_{\varphi}y ) provided that Dx,yj = 0 \Delta_{x,y}\varphi = 0 (Dh1,h2 \Delta_{h_1,h_2} stands here and in the sequel for the superposition Dh1 °Dh2 \Delta_{h_1} \circ \Delta_{h_2} of the usual difference operators).¶We are looking for necessary and/or sufficient conditions upon the functional j \varphi to generate a j \varphi -orthogonality such that the pair X,^j X,\perp_{\varphi} forms an orthogonality space in the sense of J. Rätz (cf. [6]). Two new characterizations of inner product spaces as well as a generalization of some results obtained in [2] are presented.  相似文献   

17.
Let f ? C(\Bbb Rn,\Bbb Rn) f\in C(\Bbb R^n,\Bbb R^n) be quasimonotone increasing such that Y(f(y)-f(x)) £ -c Y(y-x) (x << y) \Psi (f(y)-f(x)) \!\le -c \Psi (y-x) (x\ll y) for a linear and strictly positive functional Y \Psi and c > 0. We prove that f is a homeomorphism with decreasing and Lipschitz continuous inverse and we prove the global asymptotic stability of the equilibrium solution of x¢=f(x) x'=f(x) .  相似文献   

18.
Based on the transformation y = g(x), some new efficient Filon-type methods for integration of highly oscillatory function òabf(x) eiwg(x) dx\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x with an irregular oscillator are presented. One is a moment-free Filon-type method for the case that g(x) has no stationary points in [a,b]. The others are based on the Filon-type method or the asymptotic method together with Filon-type method for the case that g(x) has stationary points. The effectiveness and accuracy are tested by numerical examples.  相似文献   

19.
Let D be a simple digraph without loops or digons. For any v ? V(D) v\in V(D) , the first out-neighborhood N+(v) is the set of all vertices with out-distance 1 from v and the second neighborhood N++(v) of v is the set of all vertices with out-distance 2 from v. We show that every simple digraph without loops or digons contains a vertex v such that |N++(v)| 3 g|N+(v)| |N^{++}(v)|\geq\gamma|N^+(v)| , where % = 0.657298... is the unique real root of the equation 2x3 + x2 -1 = 0.  相似文献   

20.
This paper is devoted to differential invariants of equations
y"=a3(x,y)y¢3+a2(x,y)y¢2+a1(x,y)y¢+a0(x,y).y'=a^{3}(x,y)y^{\prime3}+a^{2}(x,y)y^{\prime2}+a^{1}(x,y)y'+a^{0}(x,y).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号