首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 187 毫秒
1.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

2.
采用水热方法制备了ZnIn2S4/g-C3N4复合材料, 并通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 紫外-可见漫反射光谱(UV-Vis DRS)、 透射电子显微镜(TEM)和荧光光谱(PL)等手段对其结构和性能进行表征. 结果表明, 当ZnIn2S4的负载量为20%(质量分数)时, 复合材料表现出最佳的光催化制氢性能, 制氢速率可达到637.08 μmol·g-1·h-1, 分别为纯ZnIn2S4和纯g-C3N4的4倍和37倍. 其原因在于ZnIn2S4和g-C3N4之间具有紧密的异质结结构, 两者有效的结合改善了组分的能带匹配和界面电荷转移, 从而大幅增强了载流子的分离和迁移, 进而提高光催化的性能.  相似文献   

3.
通过煅烧和静电自组装的方法制备了1T′ MoS2超薄纳米片和类石墨烯相氮化碳(g-C3N4)纳米片的复合材料. 该材料在光催化实验中展现出6.24 μmol?g?1?h?1的产氢速率, 优于贵金属铂修饰的g-C3N4纳米片的性能(4.64 μmol?g?1?h?1). 此外, 该复合材料在光催化降解有机染料甲基橙的实验中表现出0.19 min?1的催化速率, 而纯g-C3N4纳米片只有0.053 min?1的催化速率. 材料光催化性能的提升可归结于1T′MoS2 和g-C3N4之间的协同效应, 包括光吸收的增强以及因1T′MoS2优异电子导电性而得到的高效电荷分离.  相似文献   

4.
石墨相氮化碳(g-C3N4)是一种优异的产H2光催化剂,但是其存在载流子分离效率低、光吸收能力较差和比表面积小的问题。本研究通过对二氰二胺和亚甲基蓝(MB)进行热共聚合,结合后续热剥离策略,成功合成了一种新型分子内供体-受体(D-A)结构g-C3N4纳米片光催化剂。实验结果和密度泛函理论(DFT)计算表明,将亚甲基蓝掺入g-C3N4框架中扩大了光吸收范围,促进了载流子的分离。此外,热剥离增加了催化剂的比表面积且进一步促进了载流子的分离。因此,D-A结构g-C3N4纳米片显示出大幅提升的光催化产氢活性(2275.6μmol·h-1·g-1),分别是块状g-C3N4、D-A结构g-C3N4、g-C3N4纳米片的5.30,2...  相似文献   

5.
采用高温煅烧法、 原位生长法和光还原法分三步制备出双功能复合光催化剂g-C3N4/CdS/Ni. 材料中CdS的引入可以增强光生电子和空穴的分离效率, Ni可以进一步提高光致产氢速率. 在以三乙醇胺(TEOA)为电子给体的水溶液中对所制备的材料进行了催化产氢性能测试, 并对材料中CdS的含量进行了优化. 结果表明, 25% (质量分数)CdS负载量的复合材料催化产氢性能最佳, 其催化产氢速率为4134.5 μmol·g-1·h-1, 是 g-C3N4/Ni催化产氢速率的115倍. 且Ni是一种良好的质子催化剂. 在此基础上, 以5-羟甲基糠醛(HMF)替代TEOA作为体系的电子给体, 其可以被选择性地催化氧化为增值化学品2, 5-二甲酰基呋喃(DFF). 当体系中HMF的转化率为82.3%, DFF的选择性为69.4%时, DFF的产率(57.2%)达到最高, 体系中H2的产量为 51.8 μmol/g. g-C3N4/CdS/Ni复合材料可以在同一体系中进行催化光致产氢和HMF的选择性氧化.  相似文献   

6.
首先以尿素和柠檬酸作为前驱体,通过热处理工艺合成N掺杂的g-C3N4(N-g-C3N4),然后利用化学还原的方法将Au沉积到N-g-C3N4表面,形成Au修饰的N掺杂的g-C3N4复合光催化材料(Au/N-g-C3N4)。通过XRD、XPS、TEM、UV-Vis和光电流测试对其进行了表征,与同等条件下制备的N-g-C3N4和g-C3N4相比,Au/N-g-C3N4具有更强的光吸收性能和更大的光电流。同时对材料的可见光产氢性能进行了研究,结果发现:当Au含量为1%时,复合材料呈现最佳的光催化产氢性能,其产氢速率为974μmol·g-1·h -1,为N-g-C3N4  相似文献   

7.
以尿素作为原料, 采用熔盐辅助热聚合法在KCl-NaCl-BaCl2体系中制备了带隙可调的g-C3N4纳米结构. 采用X射线衍射仪、 扫描电子显微镜、 X射线光电子能谱仪、 紫外-可见漫反射光谱仪及荧光光谱仪对产物的结构、 形貌、 成分及光学性能进行了表征. 对g-C3N4纳米结构可见光条件下的光催化制氢性能进行了测试, 研究了不同的尿素/熔盐比对其光催化性能的影响. 结果表明, 熔盐辅助热聚合法制备的g-C3N4 纳米结构吸收光谱出现明显宽化, 吸收边由普通热聚合法制备g-C3N4的约450 nm红移至约500 nm左右. 同时光生载流子复合几率明显降低, 从而有效提升其光催化制氢性能. 最优化的g-C3N4(60)样品析氢速率达到12301.1 μmol?g?1?h?1, 为普通热聚合法制备g-C3N4析氢速率的4倍.  相似文献   

8.
采用原位光沉积-煅烧法制得了Z型α-Fe2O3/g-C3N4异质结复合光催化剂。分别采用透射电子显微镜、X射线衍射、X射线光电子能谱、紫外可见漫反射光谱、荧光光谱以及电化学测试对样品进行了表征,并考察了可见光下光解水产氢活性。结果表明:当α-Fe2O3的负载量为2.9%时,α-Fe2O3/g-C3N4复合光催化剂具有最优的产氢催化活性,产氢速率高达1841.9μmol·g-1·h-1,约为g-C3N4的3.3倍。光催化性能的提高主要归因于3方面:(1)高温煅烧过程中α-Fe2O3的形成,有效促进了氮化碳片层的热剥离,增大了比表面积,从而为光催化反应提供了更多反应活性位;(2)超细α-Fe2O3颗粒(5~8 nm)高度均匀地分散在g-C3N4表面,并且与其紧密结合,形成了高质量的Z型异质结;(3)Z型异质结不仅有效抑制地了光生载流子的复合,同时极大地保留了g-C3N4导带电子的强还原性和α-Fe2O3价带空穴的强氧化性。  相似文献   

9.
首先以尿素和葡萄糖为前驱体,通过热缩合方法制备了C/g-C3N4,然后利用溶剂热法合成C/g-C3N4/MoS2三元复合材料。通过不同的手段对其进行了表征,结果表明,与C/g-C3N4相比,该三元复合材料不仅具有更强的光吸收性能和更大的表面积,而且更有利于电子的转移。同时对其可见光催化降解甲基橙性能进行研究,结果发现,C/g-C3N4/MoS2-2.0%复合材料(含有质量分数为2.0%的MoS2)表现出最高的反应速率常数(0.0086 min-1),分别为g-C3N4/MoS2-2.0%(0.0015 min-1)和C/g-C3N4(0.0036min-1)的5.7倍和2.3倍。  相似文献   

10.
以六水金氯化钴、 硒粉和尿素为前驱体, 通过水热法合成C3N4/CoSe2纳米粒子, 再将其锚定在石墨烯气凝胶(Graphene aerogel, GA)表面, 制备蜂窝状C3N4/CoSe2/GA光催化剂. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等手段对材料的结构、 形貌和光学性能进行表征. 同时以氙灯作为模拟可见光光源, 通过CO2光催化还原为CO考察所制备纳米材料的光催化活性. 结果表明, 在C3N4纳米片表面引入了CoSe2和GA并制备出蜂窝状结构 C3N4/CoSe2/GA催化剂, 通过GA, CoSe2与C3N4耦合可以显著提高光吸收密度以及扩展光响应范围, 呈现了更低的荧光强度和最大的电子转移速率. 在同种光催化下, C3N4/CoSe2/GA对CO2还原催化效率最大, CO产量达到5.75 μmol·g-1·h-1, 并且重复使用性能良好.  相似文献   

11.
Here, we fabricated a pyridine-copolymerized g-C3N4 by a novel and cost-effective approach based on Schiff-base chemistry. Thus produced g-C3N4 showed significantly enhanced and stable visible-light photocatalytic H2 evolution performance compared to pristine g-C3N4 obtained from urea. Subsequently, we constructed a composite of pyridine-modified g-C3N4 and N-doped reduced graphene oxide (N-rGO) by facile one-pot calcination to elevate the photocatalytic efficiency further. The peak H2 production rate achieved using this composite was 304 μmol·h-1, about 11.7 and 3.1 times as those obtained using pure g-C3N4 and pyridine-modified g-C3N4, respectively. In addition to enhanced visible light absorbance and enlarged surface area, the promoted separation, transfer, and surface reactivity of photogenerated charge carriers by the pyridine ring as intramolecular electron acceptor and N-rGO as "electron-transfer activation region" are considered responsible for the remarkably enhanced photocatalytic activity.  相似文献   

12.
Developing novel and efficient catalysts is a significant way to break the bottleneck of low separation and transfer efficiency of charge carriers in pristine photocatalysts. Here, two fresh photocatalysts, g-C3N4@Ni3Se4 and g-C3N4@CoSe2 hybrids, are first synthesized by anchoring Ni3Se4 and CoSe2 nanoparticles on the surface of well-dispersed g-C3N4 nanosheets. The resulting materials show excellent performance for photocatalytic in situ hydrogen generation. Pristine g-C3N4 has poor photocatalytic hydrogen evolution activity (about 1.9 μmol·h-1) because of the rapid recombination of electron-hole pairs. However, the hydrogen generation activity is well improved after growing Ni3Se4 and CoSe2 on the surface of g-C3N4, owing to the unique effect of these selenides in accelerating the separation and migration of charge carriers. The hydrogen production activities of G-C3N4@Ni3Se4 and g-C3N4@CoSe2 are about 16.4 μmol·h-1 and 25.6 μmol·h-1, which are 8-fold and 13-fold that of pristine g-C3N4, respectively. In detail, coupling Ni3Se4 and CoSe2 with g-C3N4 greatly improves the light absorbance density and extends the light response region. The photoluminescence intensity of the photoexcited Eosin Y dye in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is weaker than that in the presence of pure g-C3N4. On the other hand, the upper limit of the electron-transfer rate constants in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is greater than that in the presence of pure g-C3N4. Among the g-C3N4@Ni3Se4@FTO, g-C3N4@CoSe2@FTO, and g-C3N4@FTO electrodes, the g-C3N4@FTO electrode has the lowest photocurrent density and the highest electrochemical impedance, implying that the introduction of CoSe2 and Ni3Se4 onto the surface of g-C3N4 enhances the separation and transfer efficiency of photogenerated charge carriers. In other words, the formation of two star metals selenide based on g-C3N4 can efficiently inhibit the recombination of photogenerated charge carriers and accelerate photocatalytic water splitting to generate H2. Meanwhile, the right shift of the absorption band edge effectively reduces the transition threshold of the photoexcited electrons from the valence band to the conduction band. In addition, the more negative zeta potential for the g-C3N4@Ni3Se4 and g-C3N4@CoSe2 catalysts as compared with that for pure g-C3N4 leads to a notable enhancement in the adsorption of protons by the sample surface. Moreover, the results of density functional theory calculations indicate that the hydrogen adsorption energy of the N sites in g-C3N4 is -0.22 eV; further, the hydrogen atoms are preferentially adsorbed at the bridge site of two selenium atoms to form a Se―H―Se bond, and the adsorption energy is 1.53 eV. In-depth characterization has been carried out by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, transient photocurrent measurements, and Fourier transform infrared spectroscopy; the results of these experiments are in good agreement with one another.  相似文献   

13.
研究了在不同的半导体体系(TiO2, CdS和C3N4)中, Ni2P光催化甲酸(HCOOH)分解制氢的助催化效应. 作为助催化剂, Ni2P与3种半导体形成的复合光催化剂均表现出良好的HCOOH分解制氢活性. Ni2P/TiO2, Ni2P/CdS, Ni2P/C3N4 3种光催化剂最优的产氢活性分别为41.69, 22.45和47.67 μmol·mg-1·h-1, 分别为纯TiO2, CdS和C3N4的3.8倍、 10倍和210倍, 表明Ni2P在光催化HCOOH分解制氢体系中具有普适性. 研究了光催化HCOOH分解制氢的机理, Ni2P的加入使光生电子从半导体转移至Ni2P, 提高了光生电子-空穴对的分离效率; Ni2P还促进了活性物种·OH的生成, 提高了光催化HCOOH分解的产氢速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号