首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new route to prepare optically active polyamides was established, based on the polycondensation of two new active diesters: the active diesters of 4-chloro-1 hydroxybenzotriazole, such as 1,1'-(terephthaloyldioxy)bis(4-chloro-benzotriazole), and 1,1'-(isophthaloyldioxy)bis(4-chlorobenzotriazole), with optically active isomers of 2,4-diaminopentane. Dipolar aprotic solvents such as N,N-dimethylformamide and dimethyl sulfoxide were used as reaction solvents. The solution polycondensation carried out in solution at room temperature afforded optically active polyamides. The aminolysis of the two active diesters was carried out as a model reaction study.  相似文献   

2.
Two new routes to polyamides and polyesters were established, based on the polycondensationof new typical active diacylamide of benzotriazole, such as 1, 1'-(isophthaloyl) bisbenzotriazole(IPBBT) and 1, 1'-(terephthaloyl)bisbenzotriazole (PBBT) with diamines, diols and diphenol underdifferent mild conditions. The N-acylation of polycondensation occurred at room temperaturewithout added catalyst, the O-acylation of polycondensation had to complete in the presence oftriethylamine as a catalyst at 60℃.  相似文献   

3.
Two new routes to polyamides were established, based on the polycondensation of two new typical active diesters: the active diester of N-hydroxy-5-norbornene-2,3-dicarboximide, such as N,N′-(terephthaloyldioxy)bis(5-norbornene-2,3-dicarboximide), and the active diester of 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, such as 3,3′-(isophthaloyldioxy)bis(4-oxo-3,4-dihydro-1,2,3-benzotriazine) with diamines. The polycondensation occurred at room temperature in solution without added catalyst. Dipolar aprotic solvents which included dimethyl sulfoxide and N-methyl-2-pyrrolidone were used as solvents for polymerization. Before polymer synthesis the aminolysis of two active monoesters was carried out as a model compound study.  相似文献   

4.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
New active diesters and diamides derived from 3-hydroxy-1,2-benzisoxazole were prepared for use in polyamide synthesis. The active esters and amides reacted readily with amines to give quantitative yields of amides. The high reactivity to these active esters and amides was discussed in relation to the electon-withdrawing effect of the leaving group and intramolecular general-base catalysis. Solution polycondensation of new active diesters and diamides with aliphatic and aromatic diamines proceeded slowly under mild conditions to produce polyamides with inherent viscosities up to 1.5.  相似文献   

6.
Aromatic polyamides having inherent viscosities up to 1.8 dL/g were synthesized either by the direct polycondensation of 2,2′-bibenzoic acid with various aromatic diamines or by the low temperature solution polycondensation of 2,2′-bibenzoyl chloride with aromatic diamines. All the aromatic polyamides were amorphous and soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, dimethyl sulfoxide, m-cresol, and pyridine. Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polymides had glass transition temperatures in the range of 226-306deg;C and began to lose weight around 350°C in air.  相似文献   

7.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Novel examples were presented of the use in polyamide synthesis of active 2-benzothiazolyl dithiolesters for which aminolysis is assisted by a neighboring group. Solution polycondensation of new dithiolesters, 2,2′-(adipoyldithio)bisbenzothiazole and 2,2′-(isophtahloyldithio)bisbenzothiazole, with both aliphatic and aromatic diamines in polar aprotic solvents (N-methyl-2-pyrrolidone and hexamethylphosphoramide) took place rapidly at room temperature yielding polyamides with high molecular weight. The interfacial polycondensation in a chloroform–water system was also successful for polyamide formation. S,S′-Di-p-nitrophenyl dithioisophthalate reacted much more slowly toward diamines than the 2-benzothiazolyl dithiolesters. Prior to polymer synthesis, the aminolysis of active monothiolesters was carried out as a model compound study.  相似文献   

9.
Preparation of analogs of acyclic nucleoside, two diols containing 5-benzyluracil base derived from 2-(5-benzyluracil-1-yl)propanoic acid (BUPA), and the corresponding model polymers of polynucleotide with linear polyester backbone and 2-(5-benzyluracil-1-yl)propionamido-type pendant as a side chain are described. N-(1′,3′-Dihydroxy-2′-methyl-2′-propyl)-2-(5-benzyluracil-1-yl)propionamide (HEBUPA) and its isomer N(β,β′-dihydroxyethyl)-2-(5-benzyluracil-1-yl)propionamide (HEBUPA) were prepared through the selective N-acylation of primary aminodiol, 2-methyl-2-amino-1,3-propanediol and secondary aminodiol, diethanolamine with BUPA, respectively, by the active ester-N-hydroxy-5-norbornene-2,3-dicarboximide (HONB) method. The resulting diols were polycondensed with active diamide of benzotriazole (HBT) such as 1,1′-(terephthaloyl)bisbenzotriazole (PBBT), 1,1′-(isophthaloyl)bisbenzotriazole (IPBBT), 1,1′-(sebacocyl)bisbenzotriazole (SeBBT), giving semirigid and flexible polyesters containing 5-benzyluracil derivative as the side group, by the selective O-acylation of active diamide-benzotriazole technique. Diols HMBUPA and HEBUPA were found to be very potent inhibitors of uridine phosphorylase isolated from Sarcoma 180 cells, with Ki values of 0.13 and 0.11 μM, respectively.  相似文献   

10.
A new synthetic route to polyamides and hydroxyl polyamides was established, based on the selecting (?)-acylation of three novel typical active diesters: the active diester of N-hydroxy- (?) 4-epoxy-5-cyclohexene-2, 3-dicarboximide( HOEC), such as N, N'-(temphthaloyldioxy) bis(1, 4- epoxy - 5 - cyclohexene- 2, 3 - dicarboximide.) ( PBOEC), N, N'- ( isophthaloyl - dioxy) bis (1,4-epoxy-5-cyclohexene-2, 3-dicarboximide)(IPBOEC) and N, N' -(adipoyldioxy) his (1,4-epoxy-5-cyclohexene-2, 3-dicarboximide) ( ADOEC)with aliphatic diamines and 1,3-diamino-2-hydroxypropane. The polycondensation occurs at room temperature in solution without added catalyst. Dipolar aprotic solvents which include dimethyl sulfoxide, N- methyl - 2- pyrrolidone and dimethylformamide were used as solvents for polymerization. The selective N-acylation of two active diesters was performed as a model reaction study.  相似文献   

11.
The preparation of polyamides from derivatives of optically active biphenic acid is described. The diacid chlorides chosen were 2,2′-dinitro-6,6′-dimethylbiphenyl-4,4′-dicarbonyl chloride and 2,2′-dichloro-6,6′-dimethylbiphenyl-4,4′-dicarbonyl chloride, the diamines were phenyldiamines (o-, m-, p-) piperazine, trans-2,5-dimethylpiperazine, and 1,2-piperaazolidine. Polymerization was carried out by the method of interfacial polycondensation. The polymers of aromatic diamines were insoluble in common organic solvents but soluble in dimethylformamide containing 5% lithium chloride, triesters of phosphoric acid, and methanesulfonic acid. The polymers of aliphatic diamines were also insoluble in common organic solvents but soluble in trifluoroethanol. All polymers had melting points higher than 280°C.  相似文献   

12.
Novel, soluble aromatic polyamides and copolyamides containing tetraphenylethylene units were prepared by the low temperature solution polycondensation of 1,1-bis(4-aminophenyl)-2,2-diphenylethylene and aromatic diamines with various aromatic diacid chlorides. Highmolecular-weight polyamides having inherent viscosities of 0.6–1.5 dL/g and number-average molecular weight above 21000 were obtained quantitatively. These polymers were readily soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide and gave pale yellow, transparent, flexible films by casting from DMAc solution. The polymers had glass transition temperatures between 290 and 340°C, and started to lose weight around 400°C, with 10% weight loss being recorded at about 470°C in air.  相似文献   

13.
A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride and (S)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45–0.70 dL/g, very good solubility in common organic solvents, glass‐transition temperatures of 124–290 °C, and good thermal stability. Wide‐angle X‐ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1′‐binaphthyls along the rigid backbones. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4318–4326, 2004  相似文献   

14.
The preparation of three novel alternating copoly(aromatic ester–aliphatic amide)s containing the same ordered amide–amide–ester–ester (AAEE), the same para-disubstituted phenyl, and the different long methylene chain structure were described. 1,1′-(Adipoyl)bisbenzotriazole (AdBBT), 1,1′-(suberoyl)bisbenzotriazole (SuBBT), and 1,1′-(sebacoyl)bisbenzotriazole (SeBBT) were synthesized. These diacylbenzotriazoles were preferred to aminoethanol at the amino group because of the selective N-acylation of active acylamide of benzotriazole in excellent yield at room temperature to give diol monomers such as N,N′-bis(2-hydroxyethyl)adipic amide (HEAdA), N,N′-Bis(2-hydroxyethyl)subaric amide (HESuA), and N,N′-bis(2-hydroxyethyl)sebacic amide (HESeA). Polycondensation of 1,1′-(teraphthaloyl)bisbenzotrizole (tPBT) with HEAdA, HESuA, and HESeA gave the corresponding alternating copoly(aromatic ester–aliphatic amide)s: P(tPE–AdA), P(tPE–SuA), and P(tPE–SeA), respectively. The alternating copoly(aromatic ester–aliphatic amide)s were characterized by 1H-NMR spectra. The resulting polymers have two different chain units; one is chain unit of poly(ethylene terephthalate) and the other is a chain unit of polyamide-2,6, polyamide-2,8, and polyamide-2,10; both are linked via a C? N bond.  相似文献   

15.
A group of six semiaromatic polyamides of 2,2′-[isopropylidenebis-(p-phenyleneoxy)]diacetic acid (Bisacid A2) were synthesized by low-temperature solution polycondensation techniques. Six different diamines were condensed independently with Bisacid A2 chloride in a mixture of N-methylpyrrolidone (NMP and hexamethylhosphoramide (HMPA). The polymers were obtained in 82–95% yield and possessed inherent viscosities in the range from 0.32 to 0.63 dL/g. The polyamides were characterized by IR and 'H-NMR spectra. The molecular weight and molecular weight distribution of the polyamides were determined by gel-permeation chromatography. The thermal stability, thermal degradation kinetics, crystallinity, density, and solubility were also determined. A model diamide (MDA) was synthesized from aniline and Bisacid A2 chloride to confirm the formation of polyamides from diamines.  相似文献   

16.
Several polyamides of p-phenylenedioxydiacetic acid (PDDA) were synthesized by the low-temperature solution polycondensation techniques. Six different diamines were condensed independently with p-phenylenedioxydiacetyl chloride (PDC) in a mixture of N-methyl pyrolidone (NMP) and hexamethyl phosphoramide (HMPA). The polymers were obtained in 80–95% yield and possessed inherent viscosities in the range 0.32–0.81 dL/g. The polymers were characterized by infrared (IR) and H1-NMR spectra. The solubility, density, crystallinity, and thermal stability of the polyamides were also determined. A model diamide (MDA-1) was also synthesized from aniline and PDC to confirm the formation of polyamides from diamines.  相似文献   

17.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

18.
Four novel semirigid poly(amide-ester)s having the same ordered amide-amide-ester-ester (-AAEE-) and the same or the different phenyl structure were synthesized from the various combination of active acylamide of benzotriazole (HBT) such as 1,1′-(isophthaloyl)bisbenzotriazole (IPBBT) and 1,1′-(terephthaloyl)bisbenzotriazole (PBBT) with diols such as N,N'-bis(2-hydroxyethyl)isophthamide (HEIPA) and N,N'-bis(2-hydroxyethyl)terephthamide (HEPTA) which prepared from the selective N-acylation of IPBBT or PBBT with aminoethanol in excellent yield at room temperature. Before the preparation of diol monomers, a model reaction of selective N-acylation was also completed from active monoacylamide of benzotriazole, 1-benzoylbenzotriazole with aminoethanol. The ordered structure of poly(amideester)s were characterized by infrared (IR) and NMR spectra. On the bases of different reactivity between selective N-acylation and O-acylation of active acylamide of benzotriazole, poly(amide-ester)s having the ordered AAEE and the same phenyl structure were also readily synthesized from the IPBBT or PBBT with aminoethanol under mild conditions by one-bath process.  相似文献   

19.
High molecular-weight aromatic polyamides were obtained from 1,5- and 2,6-bis-(4′-carboxy-4-phenylenoxy-sulfonyl)naphthalene by direct polycondensation reaction in N-methyl-2-pyrrolidone with various aromatic diamines, using triphenyl phosphite and pyridine as condensing agents. The polymers were characterized by elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and infrared analysis. The polyamides, obtained in quantitative yield, possessed inherent viscosities in the range 0.42–1.70 dL/g, glass transition temperatures between 245–310°C, and 10% weight loss temperatures in nitrogen and air above 435 and 424°C, respectively. Most of the polymers were soluble in aprotic solvents. The effect of the structure on properties, such as solubility, Tg, and thermal behavior, were also studied. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The aminolysis of N-benzoyl-2-benzothiazolone was studied in model systems and was found to give excellent yields of N-substituted benzamides at room temperature. Solution polycondensation of new bisamides, N,N′-adipoylbis-2-benzothiazolone and N,N′-isophthaloylbis-2-benzothiazolone, proceeded fairly slowly with both aromatic and aliphatic diamines at room temperature to yield polyamides having inherent viscosities up to 1.5. Hexamethylphosphoramide was the best polycondensation medium among some polar aprotic solvents for the formation of high molecular weight polyamides. The high reactivity of the N-acyl-2-benzothiazolones was discussed in relation to excellent leaving nature and intramolecular general base catalysis of the benzothiazolone moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号