首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
无机卤化物钙钛矿CsPbI3胶体量子点因其优越的光电性能在光伏和发光器件领域中表现出极大的发展前景。然而,CsPbI3较差的稳定性阻碍了实际应用。为此,我们采用SCN?离子掺杂CsPbI3(SCN-CsPbI3)量子点用于提高量子点的光学性能和稳定性。研究表明,SCN?离子掺杂不仅减少了量子点缺陷、改善了光学性能,还提高了Pb-X键能、量子点结晶质量以及钙钛矿结构稳定性。结果表明,SCN-CsPbI3量子点的荧光量子产率(PLQY)超过90%,远高于未掺杂原始样品(PLQY为68%)。高的荧光量子产率表明量子点具有较低的缺陷态密度,这归咎于缺陷的减少。空间限制电荷和时间分辨荧光光谱等研究也证实SCN?离子掺杂减少了量子点的缺陷。此外,SCN-CsPbI3量子点展现出很好的抗水性能,其荧光强度在水中浸泡4 h后依然保持85%的初始值。而未掺杂原始样品的荧光性能很快消失,这是因为水诱导其相变。基于SCN-CsPbI3量子点的光电探测器表现出宽波域响应(400–700 nm),高的响应率(90 mA·W?1)和超过1011 Jones的探测度,远高于未掺杂原始量子点探测器的性能(响应率为60 mA·W?1和探测度为1010 Jones)。  相似文献   

2.
无机钙钛矿太阳能电池由于具有良好的热稳定性,高吸光系数等优点发展迅速。但无机钙钛矿材料对水分极其敏感,一般在惰性环境下中进行制备,操作复杂。本文通过简单的一步旋涂工艺,在无手套箱空气湿度条件下制备CsPbI2Br无机钙钛矿薄膜,通过介孔TiO2厚度的优化,对钙钛矿薄膜的结晶、成膜及稳定性进行了分析,发现在较厚基底介孔层上制备的钙钛矿晶粒大、无孔隙;随着基底厚度的减小,其上所形成的CsPbI2Br薄膜禁带宽度(Eg)增大;电化学阻抗测试表明在较厚基底介孔层上制备的CsPbI2Br钙钛矿具有更好的载流子提取与传输能力。对不同厚度介孔层上沉积的钙钛矿薄膜稳定性进行测试,发现CsPbI2Br钙钛矿的稳定性随着介孔层厚度的增加而提高,在空气中做放置144 h后无明显变化。在空气湿度条件下组装成器件,获得到了8.16%的最佳光电转换效率,并且对器件无任何修饰及封装的情况下,在相对湿地低于35%的空气中放置72 h后保持最初效率的73%。  相似文献   

3.
研究了一种新型的有机/无机杂化钙钛矿材料(3-BrC3H6NH3)2CuBr4薄膜的聚集态形貌和良好的微观有序性特征, 霍尔迁移率测试结果表明该材料为p型半导体, 空穴迁移率为0.0025 cm2•V-1•s-1. 利用其在紫外-可见光谱范围内与C60薄膜具有良好的光吸收互补性, 制备并研究了(3-BrC3H6NH3)2CuBr4/C60层状异质结结构中的暗态传输和光伏性能. 对不同退火温度下杂化钙钛矿薄膜的聚集态特性和器件性能之间的联系进行了探讨, 结果表明在低温退火条件下, 由于钙钛矿结构材料中有机组分排列更加有序, 器件显示更好的性能.  相似文献   

4.
采用化学浴(CBD)法在TiO2薄膜表面制备结晶性Sb2S3膜层, 获得了TiO2/Sb2S3平板异质结, 并结合聚[2,6-{4,4-双-(2-乙基己基)-4H-环戊并[2,1-b;3,4-b']-二噻吩}-交替-4,7-(2,1,3-苯并噻二唑)](PCPDTBT)空穴传输层和MoO3电极界面修饰层, 制备了FTO/TiO2/Sb2S3/PCPDTBT/MoO3/Au平板结构太阳能电池, 研究了CBD方法中热退火气氛对Sb2S3薄膜的组成、 结构及光伏性能的影响. 结果表明, 在N2气氛下退火时, 所得的Sb2S3膜层不致密且含有Sb2O3杂相, 电池效率仅为0.90%; 而在N2-S气氛下退火时, 硫会与杂相Sb2O3发生反应生成Sb2S3, 进而得到纯净、 致密、 平整的结晶Sb2S3膜层. 在平板结构太阳能电池中, 光生空穴对电池光电流的产生有明显的贡献; 随着Sb2O3杂相的消除, Sb2S3薄膜中载流子的复合减少且传输速率增大, 使太阳能电池器件中电子与空穴的收集效率和短路电流显著提高, 电池效率提高了1.34倍, 达到2.04%.  相似文献   

5.
通过溶剂添加剂1-氯萘(CN)和二硫化碳(CS2)溶剂退火(SVA)协同优化了基于窄带隙小分子受体的厚膜活性层形貌,揭示了该策略对共混膜形貌的调控机理,研究了其对活性层中的载流子动力学以及器件光伏性能的影响.结果表明,CN添加剂可以有效促进受体材料结晶聚集,CS2溶剂退火能够进一步提升活性层材料分子堆积的有序性,同时优化给受体材料相分离尺寸,降低共混膜表面的粗糙度,实现了良好的纳米尺寸相分离形貌.基于CN+SVA处理的PM6∶Y6厚膜(300 nm)器件的电荷传输和复合性质得到改善,取得了15.23%的光电转换效率(PCE),显著高于未经处理(PCE=11.75%)和仅用CN处理(PCE=13.48%)的光伏器件.该策略具有良好的适用性,将基于PTQ10∶m-BTP-PhC6器件的光伏性能从13.22%提升至16.92%.  相似文献   

6.
有机-无机杂化钙钛矿较低的缺陷形成能和表面的悬挂键会导致其薄膜中产生铅缺陷。这些深能级缺陷会直接引起载流子的非辐射复合,导致有机-无机杂化钙钛矿光伏器件的界面接触和载流子传输效率变差,最终降低了器件的综合性能。采用双硫腙作为钙钛矿薄膜表面的二次结晶诱导剂和铅缺陷钝化剂,通过对钙钛矿膜进行后处理的方法实现对钙钛矿薄膜的形貌调控和缺陷钝化。进一步的研究结果表明,双硫腙通过与铅离子配位的方式有效地钝化了铅缺陷,并诱导了表面钙钛矿晶体的二次结晶,改善了薄膜质量,进而提高了器件的综合性能。  相似文献   

7.
紫外光电探测器无论在军用和民用上都有着巨大的应用前景,CsPbCl3作为钙钛矿家族中形成能最大,化学性能稳定的成员,在可见光盲区的紫外光电探测器中有着很大潜在的应用价值。本文针对CsPbCl3薄膜难以制备的问题,发展了一种两步互扩散溶液法,通过控制前驱体PbCl2的形貌,成功地制备了CsPbCl3薄膜。利用扫描电镜、吸收光谱和X射线表征技术,证实了制备出的薄膜表面平整无孔洞、晶粒饱满和吸光度强。通过瞬态荧光和变激发光强的稳态荧光,揭示了薄膜具有载流子寿命长、缺陷态少等优异性能。最终构建出了响应度为0.75 A·W?1的横向结构紫外光电探测器,为将来进一步发展高性能CsPbCl3薄膜紫外光电探测器奠定了基础。  相似文献   

8.
开发了一类新型阳极界面缓冲材料PbI2,制备了结构为ITO/PbI2/P3HT:PC61BM/Al(氧化铟锡导电玻璃/碘化铅/聚三已基噻吩:富勒烯衍生物/铝)的器件,制备工艺包括旋涂和蒸镀,考察了PbI2在聚合物太阳能电池原型器件ITO/P3HT:PC61BM/Al中的效果。不同碘化铅浓度,退火温度,退火时间,对PbI2薄膜的质量都会有影响。很显然,高质量的PbI2薄膜将会带来好的光电转化效率。PbI2薄膜的透光性,结晶性,以及表面形貌可以用来描述所成薄膜的质量好坏。对能带来最好性能的碘化铅薄膜进行了紫外-可见光谱,X射线粉末衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM)等表征。实验发现,太阳能电池器件的效率对PbI2浓度比较敏感,最优化的条件为,旋涂浓度为3 mg·mL-1,100 ℃退火30 min,其电池的开路电压(Voc)达到0.45 V,短路电流密度(Jsc)为7.9 mA·cm-2,填充因子(FF)为0.46,与没有界面缓冲材料的器件相比,光电转换效率(PCE)由0.85%提高到1.64%。  相似文献   

9.
采用涂层法在玻璃基底上分别制备了纯聚氯乙烯(PVC)薄膜和添加水热法制备的钙钛矿型铌酸银(AgNbO3)光催化剂的复合薄膜(PVC-wAgNbO3, 其中w为AgNbO3的质量分数), 在500 W氙灯照射120 min条件下进行了薄膜的光催化降解实验. 利用X射线衍射仪(XRD)、 扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FTIR)等对光照前后薄膜的形貌及光催化降解过程进行了表征. 结果表明, 在光催化降解过程中纯PVC薄膜失重率为4.09%, 而PVC-3%AgNbO3, PVC-6%AgNbO3, PVC-9%AgNbO3和PVC-15%AgNbO3复合薄膜分别失重20.36%, 23.52%, 27.62%和33.83%. AgNbO3光催化剂加速了PVC薄膜的降解, 且随着AgNbO3光催化剂添加量的增加, PVC薄膜的光催化降解速率不断增大.  相似文献   

10.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

11.
构建异质结是改善半导体光响应和载流子传输的有效途径之一。采取电喷雾沉积法,在掺氟的二氧化锡玻璃(FTO)上先后制备了WO_(3)和Fe_(2)TiO_(5)纳米结构薄膜,并研究了其作为光阳极的光电催化性能。薄膜表面复杂的微纳米结构有效地增加了对光的捕获能力和化学反应比表面积;二者在界面处形成的异质结有效地抑制了光生载流子的复合,加速了电荷的转移,提升了光电催化水裂解性能。在1.23 V和1.6 V(vs. RHE)处,其光电流密度相比纯Fe_(2)TiO_(5)电极分别提升了1.4和4.6倍。  相似文献   

12.
使用尿素、 红磷和氯化镍为原料, 通过一种简单的焙烧方法合成了Ni5P4/g-C3N4光催化剂. 该催化剂形成的异质结可以降低界面电阻, 有效抑制光生电子-空穴对复合率. 以罗丹明B模拟污染物进行降解测试, 发现3NPC的反应速率常数最高, 几乎是g-C3N4的7倍, 并具有最高的光催化产氢能力, 制氢速率高达1013.88 μmol·g-1·h-1, 明显高于g-C3N4(664.38 μmol·g-1·h-1).  相似文献   

13.
通过分子设计合成了异丁基桥联2-叔丁基苯胺的新型二胺单体4,4′-(2-异丁基)双(2-叔丁基苯胺), 并将其分别与4种商品化芳香族二酐经高温“一步法”缩聚制得了系列聚酰亚胺(PI)树脂. 采用多种测试手段研究PI的结构和性能, 结果表明, 该系列新型聚酰亚胺不但可溶于N-甲基吡咯烷酮及N,N-二甲基甲酰胺等高沸点溶剂, 而且在乙酸乙酯和三氯甲烷等低沸点溶剂中也具有良好的溶解性. 该系列PI保持了良好的热稳定性, 在N2中5%热失重温度均在480 ℃以上, 玻璃化转变温度(Tg)介于307~356 ℃之间. 经溶液刮涂制得的PI薄膜具有良好的光学透明性, 在可见光区平均透过率可达82.3%~89.1%, 截止波长介于313~363 nm之间. 同时, 该系列PI薄膜还具有良好的机械性能和疏水性, 有望应用于光伏发电及柔性显示等领域.  相似文献   

14.
有机-无机卤化物钙钛矿是一类优异的光电材料. 在过去四年内, 基于有机-无机卤化物钙钛矿的光电器件实现了超过15%的光电转换效率. 而有机-无机卤化物钙钛矿材料的可控制备是保证其在光电器件中应用的基础. 本文采用新的沉积方法在玻璃衬底表面制备了一种典型的有机-无机卤化物钙钛矿CH3NH3PbI3薄膜. 其制备过程是: 采用超声辅助的连续离子吸附与反应法在玻璃衬底表面沉积PbO-PbI2复合物膜, 之后与CH3NH3I蒸汽在110 ℃环境下反应, 将PbO-PbI2复合物膜转化成CH3NH3PbI3钙钛矿薄膜. 对CH3NH3PbI3薄膜的微观结构, 结晶性及其光电性能等进行了表征. 结果表明, CH3NH3PbI3薄膜呈晶态, 具有典型的钙钛矿晶体结构. 薄膜表面形貌均匀, 晶粒尺寸超过400 nm. 在可见光范围, CH3NH3PbI3薄膜透过率低于10%, 能带宽度为1.58eV. 电学性能研究表明CH3NH3PbI3薄膜表面电阻率高达1000 MΩ. 高表面电阻率表明CH3NH3PbI3薄膜具有一定的介电性能, 其介电常数(εr)在100 Hz时达到155. 本研究提出了一种制备高质量CH3NH3PbI3钙钛矿薄膜的新方法, 所得CH3NH3PbI3薄膜可望在光、电及光电器件中得到应用.  相似文献   

15.
通过金属有机物分解法(MOD)协同光电化学沉积法, 将p型氧化物半导体CuBi2O4沉积在BiVO4纳米薄膜上, 形成包覆性异质结结构, 制备了一种新型p-n异质结光阳极n-BiVO4/p-CuBi2O4, 用于太阳能光电化学(Photoelectrochemical, PEC)水分解. 研究结果表明, 在1.23 V(vs. RHE)电势下, BiVO4/CuBi2O4 异质结光阳极表现出优良的PEC水氧化性能, 光电流密度达到2.8 mA/cm2, 负载磷酸钴(Co-Pi)的BiVO4/CuBi2O4/Co-Pi光电极, 光电流密度达到4.45 mA/cm2, 分别为BiVO4电极光电流密度的3.1倍和4.9倍. X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)、 电化学阻抗谱(EIS)和能级结构图等结果也证实, BiVO4/CuBi2O4和BiVO4/CuBi2O4/Co-Pi复合电极材料在内建电场和能带弯曲作用下, 光吸收特性增强, 载流子界面转移电阻减小, 具有良好的光电化学性能与稳定性.  相似文献   

16.
采用溶胶-凝胶法制备了In2O3纳米粉体, 通入NH3进行反应得到了中间产物InN基底材料, 再通过原位氧化过程最终获得了InN-In2O3纳米复合材料, 并利用X射线衍射仪(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线光电子能谱仪(XPS)等对所制备材料的组成、 形貌及结构等进行了表征测试. 结果表明, 该纳米复合材料呈瓶状结构. 气敏性能测试结果表明, 其在较低工作温度(75 ℃)下对甲醛气体的检出限可低至ppb级(1 ppb=1.3 μg/m3), 具有灵敏度较高(对0.13 mg/m3即100 ppb甲醛的灵敏度为12)、 响应时间较短(2 s)以及选择性和稳定性较强的优良性能. 在湿度对传感器灵敏度的影响测试中, 由于甲醛的水溶特性, 随着湿度的变化, 传感器的灵敏度发生变化. 在低甲醛浓度时湿度的变化对灵敏度的影响较大, 高浓度时影响反而较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号