首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文中提出了一种求解流体润滑轴向槽径向滑动轴承非线性油膜力的解析模型.采用油膜气穴边界条件,基于Sturm-Liouville理论,求解了非线性油膜的压力分布.为了便于求解油膜动压润滑的Reynolds方程,将油膜压力函数分解为特解和通解相加的形式,润滑油膜的破裂位置通过连续性条件确定.运用分离变量法,将特解的压力分布分解为周向分离函数和轴向分离函数相加的形式,周向分离函数运用Sommerfeld变换求解.将通解的压力分布分解为周向分离函数和轴向分离函数相乘的形式.采用变量代换,将周向分离函数方程转化为Sturm-Liouville型方程,根据边界条件求得本征值和本征函数系,进而得到通解的周向压力分布;通过求解微分方程,得出轴向分离函数为含本征值的双曲正切函数.在油膜完备区域,对油膜压力分布的解析表达式进行积分,从而求得有限宽轴向槽径向滑动轴承非线性油膜力.计算结果表明:本文中提出的方法和有限差分法的结果吻合得较好,验证了本文中所提出解析模型的正确有效性.  相似文献   

2.
本文中提出了一种求解有限长径向滑动轴承非线性油膜力的近似解析方法.在滑动轴承-转子系统非线性动力行为分析中,油膜力计算模型通常采用"π"油膜假设,但是,实际工况中油膜的存在区域并非是"π"区域,运行时油膜中出现气穴,破裂成条纹状(即具有Reynolds边界条件).本文中的近似解析方法采用Reynolds边界条件,基于变分原理,运用分离变量法求解油膜的压力分布,其中油膜压力的周向分离函数通过无限长轴承的油膜压力分布获得,油膜的破裂终止位置角通过连续条件确定,轴向分离函数运用变分原理并结合周向函数求得.计算结果表明:本文中提出的方法和有限元方法的结果吻合得很好.在此基础上,分析了一些轴承参数对油膜压力分布的影响.  相似文献   

3.
构筑了轴向解析、周向有限元压力分布的一维变粘度场有限宽轴承模型。在绝热边界条件下,忽略泊肃叶流项对速度的影响,不考虑温度轴向变化并沿油膜厚度方向积分,三维能量方程可降阶为平均温度场只沿周向分布的一维形式,结合滑动轴承非线性油膜力的一维直接解法,能量方程与雷诺方程可分别求解,既考虑了温粘效应对滑动轴承非线性动力学性能的影响,又提供了无需迭代直接确定油膜破裂边界和求解非线性油膜力的快速新方法。作为应用,针对进油槽位于水平两侧的椭圆瓦轴承进行了动力润滑热效应分析,与工程数据比较,计算结果吻合,证明该模型合理,适用于工程上多瓦轴承的分析计算。  相似文献   

4.
渐开线齿轮传动非牛顿润滑介质的线弹流数值分析研究   总被引:2,自引:0,他引:2  
采用适合各种流变模型的广义Reynolds方程,通过数值联立求解非牛顿介质的线弹流润滑基本方程组,获得了渐开线齿轮啮合过程的油膜压力、膜厚、表面剪应力分布,并分析了啮合过程中非牛顿效应对齿轮传动最小油膜厚度的影响。在数值计算方向引入延拓方法,使表面煎应力迭代具有大范围收敛性。  相似文献   

5.
两种滑动轴承油膜压力计算方法的比较   总被引:2,自引:0,他引:2  
对常用的两种计算滑动轴承油膜力的方法进行了比较。一种是在迭代求解雷诺方程过程中,如果出现角压力,则用零压力来替代的方法;另一种是根据质量守恒理论(JF0理论),由Elrod等人提出的空穴算法。指出用负压力充零的方法代替Elrold空穴算法,误差不大,但却可以克服Elrod空穴算法不稳定和振荡的缺点,大大节约计算时间。  相似文献   

6.
轴承非线性油膜力的一种变分近似解   总被引:9,自引:0,他引:9  
基于自由边值理论和凸集上的变分方法,提出一种求解当轴颈大扰动时实际轴承瞬态油膜力的近似公式。公式中引入一个参数来模拟油膜破裂自由边界(雷诺边界条件),则凸集上的泛函极值问题就转换为求此参数的代数极值问题。对椭圆轴承在轴颈作大范围扰动情况下的计算结果表明,这一方法达到了很高的精度,可用于转子-轴承系统的非线性动力分析,能大量降低数值计算瞬态油膜力所需的计算量。  相似文献   

7.
一种滑动轴承非线性油膜力变分近似计算方法   总被引:4,自引:1,他引:4  
基于变分原理,在π油膜假设条件下,利用无限长轴承的压力解,给出了滑动轴承非线性油膜力的近似表达式同时在实际轴承参数条件下,对比分析了计算结果及数值解,发现该计算结果具有较高精度.  相似文献   

8.
基于计入惯性项的Navier-Stokes方程和连续性方程,建立了计入油膜惯性作用的椭圆接触弹性流体润滑模型,研究了油膜惯性对椭圆接触弹流润滑性能的影响. 弹性变形通过快速傅里叶变换(FFT)计算,而油膜压力通过复合直接迭代法求解. 数值结果表明:在计入油膜惯性作用后,润滑膜的二次压力峰增大,入口区的油膜速度减小,且逆流区范围扩大;考虑油膜惯性作用后油膜厚度有所增大,当载荷从300 N增加到700 N时,中心膜厚最大增加了5.14%. 试验结果也表明,考虑油膜惯性作用后的中心膜厚数值解与试验结果更加接近.   相似文献   

9.
非牛顿流体有限长粗糙轴承分析   总被引:2,自引:0,他引:2  
本文采用H.Christense力提出的随机粗糙模型,推导了幂律型流体纵向粗糙型和横向粗糙型润滑雷诺方程和相应的承载力、流量系数和摩擦系数的计算公式.对有限长动载径向轴承纵向粗糙型雷诺方程,用差分方法进行数值求解,得到了粗糙度和幂律指数对轴承的压力分布、承载力、流量系数和摩擦系数影响曲线,并有表面粗糙度和润滑油的非牛顿特性独立地影响轴承油膜力学特性的结论.  相似文献   

10.
螺旋槽液体润滑轴承膜压力的算子分裂法计算   总被引:3,自引:0,他引:3  
采用算子分裂法(Operator-splitting method)求解满足JFO空泡压力边界条件和全油膜质量连续性的广义雷诺方程。润滑油膜流动由剪切流动和压力差流动两部分组成。先采用算子分裂法的迎风差分法求解剪切流动分量;再采用质量集中的有限元法求解压力差流动。结果表明:由算了分裂法得到的一维滑块轴承数值解与基于Elord算法的结果一致。同时还计算了人字型螺旋槽液体润滑轴承的压力分布、承载力和偏  相似文献   

11.
An inverse method is presented which accurately determines the pressure distribution for assigned wall shear in a two-dimensional, laminar, incompressible boundary layer. The method reformulates the mechul function scheme of Cebeci and Keller to produce a stable solution in the marching direction and to increase accuracy in the normal direction. In the reformulation a modified pressure gradient parameter variation in the normal direction is used in conjunction with three-point backward differences for streamwise derivatives and fourth-order accurate splines for normal derivatives. The resulting spline-finite difference equations are solved by Newton-Raphson iteration together with partial pivoting. Numerical solutions are presented for self-similar and non self-similar flows and compared with published results.  相似文献   

12.
We consider a contact problem on the interaction of a rigid strip die with the boundary of a viscoelastic base. We assume that the die moves at a constant velocity on this boundary and is indented into it by a constant normal force. Friction in the die—surface contact region is neglected. The die base is corrugated in the direction perpendicular to the direction of motion. At the first stage, we determine the displacement of the base boundary due to the normal load applied to it. Then, at the second stage, we derive the integral equation of the contact problem for determining the contact pressure. At the third stage, we construct an approximate solution of this integral equation by using the modified Multhopp—Kalandiya method.  相似文献   

13.
For critical load bearing structures, it is often necessary to experimentally determine the load distribution on the structure so that accurate finite element models can be developed for stress and fatigue life predictions. An inverse problem approach is presented here for computing or calibrating the loads and boundary conditions acting on a structure. This enables the creation of more accurate finite element models, especially for structures that have complicated load distribution and compliant boundary conditions. The method presented here involves minimizing the least square error between the strains computed using the finite element model and the strains and displacements obtained experimentally. The nodal loads and the compliance at fixed boundaries are treated as the variables in the optimization problem. The compliance is modeled as springs attached at the nodes that are on the boundary where the structure is restrained. The method is verified by computing the loads and boundary conditions when displacements, maximum shear strain or both are available at large number of points on the surface of the structure. The experimental data set was generated using the luminescent photoelastic coating (LPC) technique.  相似文献   

14.
A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecting the quadratic pressure gradient term in the governing equations. Based on these concerns, in consideration of the quadratic pressure gradient term, a basic moving boundary model is constructed for a one-dimensional seepage flow problem with a threshold pressure gradient. Owing to a strong nonlinearity and the existing moving boundary in the mathematical model, a corresponding numerical solution method is presented. First, a spatial coordinate transformation method is adopted in order to transform the system of partial differential equations with moving boundary conditions into a closed system with fixed boundary conditions; then the solution can be stably numerically obtained by a fully implicit finite-difference method. The validity of the numerical method is verified by a published exact analytical solution. Furthermore, to compare with Darcy’s flow problem, the exact analytical solution for the case of Darcy’s flow considering the quadratic pressure gradient term is also derived by an inverse Laplace transform. A comparison of these model solutions leads to the conclusion that such moving boundary problems must incorporate the quadratic pressure gradient term in their governing equations; the sensitive effects of the quadratic pressure gradient term tend to diminish, with the dimensionless threshold pressure gradient increasing for the one-dimensional problem.  相似文献   

15.
A method is developed for determining the shape of an axisymmetric body on the basis of the pressure coefficient distribution specified along the meridional section of the body. Viscosity is taken into account within the framework of the boundary layer model. The method is based on an iterative process, which involves the solutions of the inverse problem in the plane case and of the direct problem for an axisymmetric body. A code implementing the iterative process is written, and examples of numerical results are given.  相似文献   

16.
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.  相似文献   

17.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
IntroductionTheflowtheoryanditsapplicationoffluidsflowinafractalreservoirhavecontinuallygonedeepintostudysinceChangandYortsos[1]builttheflowmodeloffluidthroughafractalreservoir.TONGDeng_ke[2 ]presentedtheexactsolutionanditspressurecharacteristicsfortheva…  相似文献   

19.
复杂边界非均质渗流场流线分布研究   总被引:2,自引:0,他引:2  
建立了考虑源(汇)影响的含有不渗透区域复杂边界条件下非均质油藏稳定渗流的数学模型。利用扰动边界元方法求解数学模型,获得了地层中任意一点的压力公式.在此基础上,提出了流线场的生成方法。绘制了考虑非均质性、复杂边界和不渗透区域影响的流线分布图,并分析了流线分布的特征。通过分析表明,渗流场的非均质性和不渗透区域的存在都对流线分布存在较大的影响。利用本文方法产生的流线分布图能够较为直观地反映出油藏流体在注采井间的运动轨迹,为优化井网和注入方案提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号