首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The nonlinear coupled longitudinal-transverse vibrations and stability of an axially moving beam, subjected to a distributed harmonic external force, which is supported by an intermediate spring, are investigated. A?case of three-to-one internal resonance as well as that of non-resonance is considered. The equations of motion are obtained via Hamilton??s principle and discretized into a set of coupled nonlinear ordinary differential equations using Galerkin??s method. The resulting equations are solved via two different techniques: the pseudo-arclength continuation method and direct time integration. The frequency-response curves of the system and the bifurcation diagrams of Poincaré maps are analyzed.  相似文献   

2.
This paper investigates the nonlinear forced dynamics of an axially moving Timoshenko beam. Taking into account rotary inertia and shear deformation, the equations of motion are obtained through use of constitutive relations and Hamilton’s principle. The two coupled nonlinear partial differential equations are discretized into a set of nonlinear ordinary differential equations via Galerkin’s scheme. The set is solved by means of the pseudo-arclength continuation technique and direct time integration. Specifically, the frequency-response curves of the system in the subcritical regime are obtained via the pseudo-arclength continuation technique; the bifurcation diagrams of Poincaré maps are obtained by means of direct time integration of the discretized equations. The resonant response is examined, for the cases when the system possesses a three-to-one internal resonance and when not. Results are shown through time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The results indicate that the system displays a wide variety of rich dynamics.  相似文献   

3.
The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method discretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.  相似文献   

4.
In this paper, the post-divergence behaviour of extensible fluid-conveying pipes supported at both ends is studied using the weakly nonlinear equations of motion of Semler, Li and Païdoussis. The two coupled nonlinear partial differential equations are discretized via Galerkin's method and the resulting set of ordinary differential equations is solved either by Houbolt's finite difference method or via AUTO. Typically, the pipe is stable at its original static equilibrium position up to the flow velocity where it loses stability by static divergence via a supercritical pitchfork bifurcation. The amplitude of the resultant buckling increases with increasing flow, but no secondary instability occurs beyond the pitchfork bifurcation. The effects of the system parameters on pipe behaviour as well as the possibility of a subcritical pitchfork bifurcation have also been studied.  相似文献   

5.
The thermo-mechanical nonlinear dynamics of a buckled axially moving beam is numerically investigated, with special consideration to the case with a three-to-one internal resonance between the first two modes. The equation of motion of the system traveling at a constant axial speed is obtained using Hamilton??s principle. A closed form solution is developed for the post-buckling configuration for the system with an axial speed beyond the first instability. The equation of motion over the buckled state is obtained for the forced system. The equation is reduced into a set of nonlinear ordinary differential equations via the Galerkin method. This set is solved using the pseudo-arclength continuation technique to examine the frequency response curves and direct-time integration to construct bifurcation diagrams of Poincaré maps. The vibration characteristics of the system at points of interest in the parameter space are presented in the form of time histories, phase-plane portraits, and Poincaré sections.  相似文献   

6.
Based on the Timoshenko beam model the equations of motion are obtained for large deflection of off-center impact of a column by a rigid mass via Hamilton's principle. These are a set of coupled nonlinear partial differential equations. The Newmark time integration scheme and differential quadrature method are employed to convert the equations into a set of nonlinear algebraic equations for displacement components. The equations are solved numerically and the effects of weight and velocity of the rigid mass and also off-center distance on deformation of the column are studied.  相似文献   

7.
The nonlinear global forced dynamics of an axially moving viscoelastic beam, while both longitudinal and transverse displacements are taken into account, is examined employing a numerical technique. The equations of motion are derived using Newton′s second law of motion, resulting in two partial differential equations for the longitudinal and transverse motions. A two-parameter rheological Kelvin–Voigt energy dissipation mechanism is employed for the viscoelastic structural model, in which the material, not partial, time derivative is used in the viscoelastic constitutive relations; this gives additional terms due to the simultaneous presence of the material damping and the axial speed. The equations of motion for both longitudinal and transverse motions are then discretized via Galerkin’s method, in which the eigenfunctions for the transverse motion of a hinged-hinged linear stationary beam are chosen as the basis functions. The subsequent set of nonlinear ordinary equations is solved numerically by means of the direct time integration via modified Rosenbrock method, resulting in the bifurcation diagrams of Poincaré maps. The results are also presented in the form of time histories, phase-plane portraits, and fast Fourier transform (FFTs) for specific sets of parameters.  相似文献   

8.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

9.
This paper is concerned with the dynamics of a spacecraft with multi-strut passive damper for large flexible appendage.The damper platform is connected to the spacecraft by a spheric hinge,multiple damping struts and a rigid strut.The damping struts provide damping forces while the rigid strut produces a motion constraint of the multibody system.The exact nonlinear dynamical equations in reducedorder form are firstly derived by using Kane’s equation in matrix form.Based on the assumptions of small velocity and small displacement,the nonlinear equations are reduced to a set of linear second-order differential equations in terms of independent generalized displacements with constant stiffness matrix and damping matrix related to the damping strut parameters.Numerical simulation results demonstrate the damping effectiveness of the damper for both the motion of the spacecraft and the vibration of the flexible appendage,and verify the accuracy of the linear equations against the exact nonlinear ones.  相似文献   

10.
The nonlinear governing motion equation of slightly curved pipe with conveying pulsating fluid is set up by Hamilton’s principle. The motion equation is discretized into a set of low dimensional system of nonlinear ordinary differential equations by the Galerkin method. Linear analysis of system is performed upon this set of equations. The effect of amplitude of initial deflection and flow velocity on linear dynamic of system is analyzed. Curves of the resonance responses about \(\varOmega \approx {\omega _\mathrm{{1}}}\) and \(\varOmega \approx \mathrm{{2}}{\omega _\mathrm{{1}}}\) are performed by means of the pseudo-arclength continuation technique. The global nonlinear dynamic of system is analyzed by establishing the bifurcation diagrams. The dynamical behaviors are identified by the phase diagram and Poincare maps. The periodic motion, chaotic motion and quasi-periodic motion are found in this system.  相似文献   

11.
The nonlinear dynamical characteristics of a doubly curved shallow microshell are investigated thoroughly. A consistent nonlinear model for the microshell is developed on the basis of the modified couple stress theory (MCST) in an orthogonal curvilinear coordinate system. In particular, based on Donnell’s nonlinear theory, the expressions for the strain and the symmetric rotation gradient tensors are obtained in the framework of MCST, which are then used to derive the potential energy of the microshell. The analytical geometrically nonlinear equations of motion of the doubly microshell are obtained for in-plane displacements as well as the out-of-plane one. These equations of partial differential type are reduced to a large set of ordinary differential equations making use of a two-dimensional Galerkin scheme. Extensive numerical simulations are conducted to obtain the nonlinear resonant response of the system for various principal radii of curvature and to examine the effect of modal interactions and the length-scale parameter.  相似文献   

12.
Dynamics of a Flexible Cantilever Beam Carrying a Moving Mass   总被引:6,自引:0,他引:6  
The motion of a flexible cantilever beam carrying a moving spring-mass system is investigated. The beam is assumed to be an Euler–Bernouli beam. The motion of the system is described by a set of two nonlinear coupled partial differential equations where the coupling terms have to be evaluated at the position of the mass. The nonlinearities arise due to the coupling between the mass and the beam. Due to the nonlinearities the system exhibits internal resonance which is investigated in this work. The equations of motion are solved numerically using the Rayleigh–Ritz method and an automatic ODE solver. An approximate solution using the perturbation method of multiple scales is also obtained.  相似文献   

13.
Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phicoordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By ~sing Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.  相似文献   

14.
刘艮  张伟 《力学学报》2019,51(3):912-921
随着材料科学的发展,越来越多的新型材料应用到了工程实践中.在气流激励的作用下,对于以航空航天工程为背景、采用复合材料的板壳结构的非线性动力学问题仍是动力学领域的研究热点.本文研究了复合材料悬臂板在亚音速气流条件下的非线性振动和响应.根据理想不可压缩流体的流动条件和 Kutta--Joukowski升力定理,基于升力面理论,利用涡格法计算了三维有限长平板机翼上的亚音速气动升力.将亚音速气动力施加到复合材料悬臂板上,利用Hamilton原理,考虑Reddy三阶剪切变形理论并引入冯$\cdot$卡门非线性应变位移关系,建立了有限长平板的非线性动力学微分方程.利用有限元方法考察了不同几何参数下层合板悬臂板的固有特性,通过比较不同材料和几何参数的线性系统的固有频率,得到不同比例的内共振关系.利用Galerkin方法将偏微分方程截断为两自由度非线性常微分方程,在这里考虑了1:2的内部共振关系并利用多尺度法进行了摄动分析.对应多个选取参数,得到了频率响应曲线.结果展示了硬化弹簧型行为和跳跃现象.   相似文献   

15.
The sub- and super-critical dynamics of an axially moving beam subjected to a transverse harmonic excitation force is examined for the cases where the system is tuned to a three-to-one internal resonance as well as for the case where it is not. The governing equation of motion of this gyroscopic system is discretized by employing Galerkin’s technique which yields a set of coupled nonlinear differential equations. For the system in the sub-critical speed regime, the periodic solutions are studied using the pseudo-arclength continuation method, while the global dynamics is investigated numerically. In the latter case, bifurcation diagrams of Poincaré maps are obtained via direct time integration. Moreover, for a selected set of system parameters, the dynamics of the system is presented in the form of time histories, phase-plane portraits, and Poincaré maps. Finally, the effects of different system parameters on the amplitude-frequency responses as well as bifurcation diagrams are presented.  相似文献   

16.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

17.
This study analyses the nonlinear transverse vibration of an axially moving beam subject to two frequency excitation. Focus has been made on simultaneous resonant cases i.e. principal parametric resonance of first mode and combination parametric resonance of additive type involving first two modes in presence of internal resonance. By adopting the direct method of multiple scales, the governing nonlinear integro-partial differential equation for transverse motion is reduced to a set of nonlinear first order ordinary partial differential equations which are solved either by means of continuation algorithm or via direct time integration. Specifically, the frequency response plots and amplitude curves, their stability and bifurcation are obtained using continuation algorithm. Numerical results reveal the rich and interesting nonlinear phenomena that have not been presented in the existent literature on the nonlinear dynamics of axially moving systems.  相似文献   

18.
Free vibrations of a beam-mass-spring system with different boundary conditions are analyzed both analytically and numerically.In the analytical analysis,the system is divided into three subsystems and the effects of the spring and the point mass are considered as internal boundary conditions between any two neighboring subsystems.The partial differential equations governing the motion of the subsystems and internal boundary conditions are then solved using the method of separation of variables.In the numerical analysis,the whole system is considered as a single system and the effects of the spring and point mass are introduced using the Dirac delta function.The Galerkin method is then employed to discretize the equation of motion and the resulting set of ordinary differential equations are solved via eigenvalue analysis.Analytical and numerical results are shown to be in very good agreement.  相似文献   

19.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

20.
In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal–external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude–response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号