首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
A series of positionally pure triglycerides (TAGs) of the form LXL, YLY, AXA, and YAY was synthesized and analyzed by reversed-phase high-performance liquid chromatography/tandem mass spectrometry. L and A represent the linoleate and arachidate moieties, respectively, and X and Y represent large arrays of fatty acid moieties of various chain lengths, degree of unsaturations, double-bond positions, and cis/trans configurations. The abundances of the collision-induced decomposition (CID) products of ammoniated TAGs were examined as a function of these parameters. The major CID products, the diglyceride (DAG) product ions and the MH(+) ions, are plotted as functions of chain length for the saturated and monounsaturated series of X and Y. The following trends are observed in the data. TAGs with higher degrees of unsaturation tend to show greater relative abundances of MH(+) in the CID spectra of their ammoniated precursor ions. The position of the fatty acid constituents along the glycerol backbone also seems to influence the abundances of the MH(+) ion in the CID spectra of the ammoniated precursor ions. A fatty acid constituent with double bonds along the fatty acid chain positioned close to the carbonyl promotes the formation of the DAG product ion that corresponds to its loss upon CID of the ammoniated precursor ion. Linoleic acid substituents also seem to promote the formation of DAG product ions, but to a lesser extent. Data for the YAY TAGs are used to predict the abundances of the product ions in the CID spectra of ammoniated YAX TAGs. These data are discussed in context of a broader project to develop and validate software algorithims to support a platform for comprehensive analysis of complex mixtures of TAGs.  相似文献   

2.
A series of positionally pure triglycerides (TAGs) of the form OXO and YOY, where O is the oleate moiety and X and Y are large arrays of different fatty acid moieties, was synthesized and analyzed by reversed-phase high-performance liquid chromatography/tandem mass spectrometry. The intensities of the collision-induced decomposition (CID) products of ammoniated TAGs (ammonium ion adducts) were examined as a function of chain length, degree of unsaturation, double-bond position, and cis/trans configuration of X and Y. The major CID products, the diglyceride fragment ions and the MH+ ion, were plotted as functions of chain length for the saturated and mono-unsaturated series of X and Y. Different trends for each of these series were observed. Trends in the abundances of these fragment ions were also characterized as a function of degree of unsaturation in the TAGs. In general, the fractional abundances of the MH+ ions vary linearly with degree of unsaturation. However, the presence of double bonds positioned close to the carbonyl carbon of the fatty acid chain promotes the formation of the diglyceride fragment ion corresponding to loss of that fatty acid. Mechanisms of the formation and decomposition of ammoniated TAGs are proposed that fit the trends observed in the data. Extensions of this work are described, and a vision of a derived library of CID spectra is discussed as a platform for comprehensive analysis of complex TAG mixtures.  相似文献   

3.
The fragmentation reactions of the protonated dipeptides Gly-Arg and Arg-Gly have been studied using collision-induced dissociation (CID) in a quadrupole ion trap, by in-source CID in a single-quadrupole mass spectrometer and by CID in the quadrupole cell of a QqTOF mass spectrometer. In agreement with earlier quadrupole ion trap studies (Farrugia, J. M.; O'Hair, R. A. J., Int. J. Mass Spectrom., 2003, 222, 229), the CID mass spectra obtained with the ion trap for the MH(+) ions and major fragment ions are very similar for the two isomers indicating rearrangement to a common structure before fragmentation. In contrast, in-source CID of the MH(+) ions and QqTOF CID of the MH(+), [MH - NH(3)](+) and [MH <23 HN = C(NH(2))(2)](+) ions provide distinctly different spectra for the isomeric dipeptides, indicating that rearrangement to a common structure has not occurred to a significant extent under these conditions even near the threshold for fragmentation in the QqTOF instrument. Clearly, under normal operating conditions significantly different fragmentation behavior is observed in the ion trap and beam-type experiments. This different behavior probably can be attributed to the shorter observation times and concomitant higher excitation energies in the in-source and QqTOF experiments compared to the long observation times and lower excitation energies relevant to the ion trap experiments. Based largely on elemental compositions derived from accurate mass measurements in QqTOF studies fragmentation schemes are proposed for the MH(+), [MH - NH(3)](+), and [MH - (HN = C(NH(2))(2))](+) ions.  相似文献   

4.
The CID mass spectra of the MH(+) ions and the b(5) ions derived therefrom have been determined for the hexapeptides YAAAAA, AYAAAA, AAYAAA, AAAYAA, and AAAAYA. The CID mass spectra for the b(5) ions derived from the five isomers are essentially identical and show abundant ion signals for nonsequence b ions. This result is consistent with cyclization of the b(5) ions to a cyclic pentapeptide before fragmentation; this cyclic peptide can open at various positions, leading to losses of amino acid residues that are not characteristic of the original amino acid sequence. These nonsequence b ions are also observed in the fragmentation of the MH(+) ions and increase substantially in importance with increasing collision energy. A comparison of the fragmentation of AAAYAA and Ac-AAAYAA indicates that N-acetylation eliminates the cyclization of b(5) ions and, thus, eliminates the nonsequence ions in the CID mass spectra of both b(5) and MH(+) ions.  相似文献   

5.
Edible oils consist primarily of triacylglycerols (TAGs). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of the oils are typically dominated by sodium adducts of these TAGs but also show prominent fragment ions (that do not contain sodium), which can interfere with analytical measurements of other components in oils. The fragments seemingly correspond to the loss of a fatty acid moiety from the sodiated TAGs as a sodium salt: RCOONa. However, a previous study suggested that the fragments actually arise from nearly complete fragmentation of unseen protonated TAGs. These authors suggested that the fragmentation occurs so rapidly and completely that protonated TAGs are not normally observed in the spectra of these oils. In this paper, we present evidence to support their theory and also demonstrate an approach to eliminate these interfering ions from the MALDI-TOF mass spectra via addition of a base to the matrix/sample mixture. The added base does not impede formation of the sodiated TAGs, but does significantly reduce the amount of fragments observed. We propose that this occurs by depleting the H+ ions from the matrix, thus preventing the formation of significant numbers of protonated TAGs in the first place. For measurements by MALDI-TOF, the relative abundances of the fragment ions are related to the strength of the base, and can be almost completely eliminated. However, in longer time-scale experiments such as in post-source decay and Fourier transform mass spectrometry, sodiated and non-sodiated diacylglycerol (DAG)-like fragments are present in spectra, regardless of whether or not a base is added to the sample.  相似文献   

6.
The regioisomers (sn-ABA/sn-AAB) of four triacylglycerols (TAGs), 18:2/18:2/18:1 (LLO), 18:2/18:1/18:1 (LOO), 16:0/18:1/18:1 (POO), and 16:0/16:0/18:1 (PPO), were quantified in lard, rapeseed oil, and sunflower seed oil by three different mass spectrometric methods using liquid chromatography (LC) and two different mass spectrometers. The ionization methods used were positive ion atmospheric pressure chemical ionization (APCI), positive ion electrospray ionization (ESI), and negative ion chemical ionization (NICI) with ammonia as the reagent gas. The LC/APCI-MS results with two different instrumentation types, LC/ESI-MS/MS and direct inlet ammonia NICI-MS/MS, were compared. The LC/APCI-MS method is based on the preferential formation of diacylglycerol (DAG) fragment ions during ionization by loss of sn-1/3 fatty acids from [M+H]+ ions. Similar formation of the DAG ions from [M+NH4]+ ions by collision-induced dissociation (CID) in the LC/ESI-MS/MS method and the [M-H--RCOOH-100]- ions from [M-H]- ions by CID in the direct inlet ammonia NICI-MS/MS method is observed. These methods were found to be useful and reliable in determining the regioisomeric structure of TAGs. No statistically significant differences were found between the results obtained with these methods. For LLO, LOO, and POO the proportions of sn-ABA isomer calculated from the results from all four methods were in rapeseed oil 7.7 +/- 6.5, 57.9 +/- 3.3, and 4.5 +/- 6.1%, respectively, and in sunflower seed oil 12.2 +/- 6.9, 34.0 +/- 5.2, and 1.4 +/- 2.8%, respectively. The proportions of ABA of POO and PPO in lard were 95.3 +/- 3.2 and 4.9 +/- 5.6%, respectively. This study also proved that the LC/APCI-MS/MS method examined is not applicable in the quantification of TAG regioisomers because the formation of DAG ions is not clearly dependent on the positional distribution of the fatty acids.  相似文献   

7.
A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether lipids. Ether lipid reference compounds were characterized by five to six major ions in the positive ion mode. The 1-O-alkyl-sn-glycerols were analyzed as the diacetoyl derivative, and showed the [M - acetoyl](+) ion as an important diagnostic ion. The diagnostic ions of directly analyzed 1-O-alkyl-2-acyl-sn-glycerols and 1-O-alkyl-3-acyl-sn-glycerols were the [M - alkyl](+), [M + H - H(2)O](+) and [M + H](+) ions. Regiospecific characterization of the fatty acid position was evident from the relative ion intensities, as the sn-2 species had relatively high [M + H](+) ion intensities compared with [M + H - H(2)O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra. The diagnostic ions of directly analyzed 1-O-alkyl-2,3-diacyl-sn-glycerols were the [M - alkyl](+), [M - sn-2-acyl](+) and [M - sn-3-acyl](+) ions. Regiospecific characterization of the fatty acid identity and position was evident from the relative ion intensities, as fragmentation of the sn-2 fatty acids was preferred to the sn-3 fatty acids; however, loss of fatty acids was also promoted by higher degrees of unsaturation. Therefore, both structural and positional effects of the fatty acids affect the spectra of the neutral ether lipids. Fragmentation patterns and optimal capillary exit voltages are suggested for each neutral ether lipid class. The present study demonstrates that reversed-phase HPLC and positive ion ESI/CID/MS provide direct and unambiguous information about the configuration and identity of molecular species in neutral 1-O-alkyl-sn-glycerol classes.  相似文献   

8.
Collision-induced dissociation (CID) spectra of sodium ion complexes ([M+Na]+ ions), produced by FAB-MS of methyl ester derivatives of ganglioside, indicate the length of the fatty acyl chain of the ceramide moieties without chemical degradation. In the case of a genuine ganglioside, only the fission of the glycosyl linkage of sialic acid was prominently observed.  相似文献   

9.
The ability to generate gaseous doubly charged cations of glycerophosphocholine (GPC) lipids via electrospray ionization has made possible the evaluation of electron-transfer dissociation (ETD) for their structural characterization. Doubly sodiated GPC cations have been reacted with azobenzene radical anions in a linear ion trap mass spectrometer. The ion/ion reactions proceed through sodium transfer, electron-transfer, and complex formation. Electron-transfer reactions are shown to give rise to cleavage at each ester linkage with the subsequent loss of a neutral quaternary nitrogen moiety. Electron-transfer without dissociation produces [M + 2Na](+.) radical cations, which undergo collision-induced dissociation (CID) to give products that arise from bond cleavage of each fatty acid chain. The CID of the complex ions yields products similar to those produced directly from the electron-transfer reactions of doubly sodiated GPC, although with different relative abundances. These findings indicate that the analysis of GPC lipids by ETD in conjunction with CID can provide some structural information, such as the number of carbons, degree of unsaturation for each fatty acid substituent, and the positions of the fatty acid substituents; some information about the location of the double bonds may be present in low intensity CID product ions.  相似文献   

10.
Dissociations of z(4) ions from pentapeptides AAXAR where X=H, Y, F, W, and V produce dominant z(2) ions that account for >50 % of the fragment ion intensity. The dissociation has been studied in detail by experiment and theory and found to involve several isomerization and bond-breaking steps. Isomerizations in z(4) ions proceed by amide trans→cis rotations followed by radical-induced transfer of a β-hydrogen atom from the side chain, forming stable C(β) radical intermediates. These undergo rate-determining cleavage of the C(α)-CO bond at the X residue followed by loss of the neutral AX fragment, forming x(2) intermediates. The latter were detected by energy-resolved resonant excitation collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) experiments. The x(2) intermediates undergo facile loss of HNCO to form z(2) fragment ions, as also confirmed by energy-resolved CID and IRMPD MS(4) experiments. The loss of HNCO from the x(2) ion from AAHWR is kinetically hampered by the Trp residue that traps the OCNH radical group in a cyclic intermediate.  相似文献   

11.
Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of solutions of edible fats/oils yielded spectra useful for their rapid differentiation and classification. Results also reflected the individual fatty acid components and their degree of unsaturation. After dissolution in hexane, MALDI-MS analysis revealed spectra showing characteristic triacylglycerols (TAGs), the main fat/oil components, as sodium adduct ions. The Euclidean distances calculated using the mass and intensity values for 20 TAGs were used to evaluate and compare spectra. With cluster analysis, animal fats grouped together differently than vegetable oils and the individual oils grouped together by type. The ion abundances for the individual TAGs and their presumed compositions were used to approximate the overall fatty acid composition of canola, soybean, corn, olive and peanut oil, as well as lard. Using this approach the calculated fatty acid compositions and degree of unsaturation generally fell within about 4% of literature values. When the degree of saturation was compared with values calculated from the package labeling the differences were about 7%.  相似文献   

12.
Several phospho- and sulfopeptides were subjected to atmospheric pressure thermal dissociation (APTD), which was effected by passing peptide ions generated by electrosonic spray ionization (ESSI) through a heated coiled metal tube. Sequence informative fragment ions including a-, b-, c-, and y-types of ions were observed with increased relative intensities under APTD compared with collision-induced dissociation (CID), performed inside the ion trap. A certain degree of preservation of phosphate and sulfate ester moieties was observed for some fragments ions under APTD. The neutral fragments generated outside the mass spectrometer were further analyzed via on-line corona discharge to provide rich and complementary sequence information to that provided by the fragment ions directly obtained from APTD, although complete losses of the modification groups were noted. Improved primary sequence information for phospho- and sulfopeptides was typically obtained by analyzing both ionic and neutral fragments from APTD compared with fragment ions from CID alone. Localization of the modification sites of phospho- and sulfopeptides was achieved by combining the structural information acquired from APTD and CID.  相似文献   

13.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

14.
The fragmentation of 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid [leukotriene C4 or LTC4 (5, 6)] and its isomeric counterpart LTC4 (14, 15) were studied by low and high-energy collisional induced dissociation (CID) and 157 nm photofragmentation. For singly charged protonated LTC4 precursors, photodissociation significantly enhances the signal intensities of informative fragment ions that are very important to distinguish the two LTC4 isomers and generates a few additional fragment ions that are not usually observed in CID experiments. The ion trap enables MSn experiments on the fragment ions generated by photodissociation. Photofragmentation is found to be suitable for the structural identification and isomeric differentiation of cysteinyl leukotrienes and is more informative than low or high-energy CID. We describe for the first time the structural characterization of the LTC4 (14, 15) isomer by mass spectrometry using CID and 157 nm light activation methods.  相似文献   

15.
A high resolution approach to silver ion HPLC was studied for the separation of positional isomers of triacylglycerols (TAGs) containing long chain polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) in enzymatically synthesized structured TAGs. Isopropanol was used as a novel modifier in a hexane-acetonitrile based mobile phase for silver ion HPLC. Peak identification was based on HPLC-mass spectroscopy and selectivities of lipases. Positional isomers of TAGs containing one molecule of EPA, DHA, or DPA with saturated fatty acids (FAs) such as caprylic acid and palmitic acid were separated within 13 min using a gradient of hexane-isopropanol-acetonitrile as mobile phase. TAGs containing two or more EPA, DHA, or DPA were also separated from each other within 25 min, but their positional isomers were unresolved. The retention characteristics of the TAG were found to be related to the number of carbon atoms in the FAs present in addition to the number of double bonds and their isomeric configuration. One isomer with an unsaturated FA in the sn-2 position eluted faster than the other with the unsaturated FA in the sn-1 or 3 position. Species with longer chain FAs attached to TAGs with the same degree of unsaturation eluted faster than those that have shorter chain FAs. For example, docosapentaenoylhexadecanoyloctanoin (DPA/C16/C8) was eluted faster than dioctanoyldocosapentaenoin (DPA/C8/C8).  相似文献   

16.
This study investigated how the physicochemical characteristics of phytosterol esters are influenced by the chain length and degree of unsaturation of the fatty acid ester moiety. Saturated and unsaturated phytosterol esters (PEs) were synthesized by the esterification of different types of fatty acids (stearic, palmitic, lauric, oleic, and linoleic acid) to β-sitosterol. The non-isothermal crystallization and melting behavior of the pure PEs were analyzed. It was proven by X-ray diffraction that saturated β-sitosteryl esters and β-sitosteryl oleate formed a bilayer crystal structure. The lamellar spacings of the bilayer structure decreased with decreasing fatty acid chain length and with an increasing degree in unsaturation. The degree of unsaturation of the fatty acid chain of the β-sitosteryl esters also influenced the type of subcell packing of the fatty acid moieties in the bilayer structure, whether or not a metastable or stable liquid crystalline phase was formed during cooling. Furthermore, it was found that the melting temperature and enthalpy of the β-sitosteryl esters increased with an increasing fatty acid chain length while they decreased with an increasing degree of unsaturation. The microscopic analyses demonstrated that β-sitosteryl oleate formed much smaller spherulites than their saturated β-sitosteryl analogues.  相似文献   

17.
The analysis of the triacylglycerol (TAG) composition of oils is a very challenging task, since the TAGs have very similar physico-chemical properties. In this work, a high temperature-gas chromatographic method coupled to electron ionization-mass spectrometry (HT-GC/EI-MS), in the Selected Ion Monitoring (SIM) mode, method was developed for the analysis of TAGs in the olive oil; this is a method suitable for routine analysis. This method was developed using commercially available standard TAGs. The TAGs studied were separated according to their equivalent carbon number and degree of unsaturation. The peak assignment was carried out by locating the characteristic fragment ions having the same retention time on the SIM profile such as [RCO+74]+ and [RCO+128]+ ions, due to the fatty acyl residues on sn-1, sn-2 and sn-3 positions of the TAG molecule and the [M−OCOR]+ ions corresponding to the acyl ions. The developed method was very useful to eliminate the interferences that appeared in the mass spectrum since electron ionization can prevent satisfactory interpretation of spectra.  相似文献   

18.
Herein we report a reversed‐phase high‐performance liquid chromatography tandem mass spectrometry (RP‐HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X]+ ions (X = NH4, Li, Na or Ag) was studied on a quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer under low‐energy collision‐induced dissociation (CID) conditions. Mass spectra that were dependent on the X+ ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'‐type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X]+ adducts, the loss of the fatty acid in the outer positions (sn‐1 or sn‐3) was favored over the loss in the central position (sn‐2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI‐MS/MS of [M + NH4]+ adducts. The only exceptions were the [M + Ag]+ adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na]+ adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn‐1 or sn‐3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn‐2 position. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

19.
Analytically useful pentafluoro ketone derivatives of fatty acids are described. The gas chromatographic/mass spectrometric characteristics of these new derivatives are compared with those of methyl, trimethylsilyl and pentafluorobenzyl esters. Pentafluoro ketones exhibit excellent chromatographic properties and significantly shorter chromatographic retention times than these other esters. The electron impact mass spectra of these new compounds show informative acylium ions, whose intensity decreases with the degree of unsaturation of the parent fatty acid. The formation of strong and informative fragment ions in negative chemical ionization (CH(4)) mass spectra of pentafluoro ketone derivatives allows the detection and the characterization (length of the chain and number of double bonds) of fatty acids at trace levels (femtomole), even in the case of polyunsaturated compounds. The scope and limitations of this new derivatization technique are also discussed.  相似文献   

20.
High-energy collisionally activated dissociation (HE-CAD) and high-energy electron- transfer dissociation (HE-ETD) on collisions with alkali-metal targets (Cs, K, and Na) were investigated for CH(2)X(2) (+) (X = Cl, Br, and I) ions by tandem mass spectrometry (MS/MS). In the HE-CAD spectra observed, peaks associated with CH(2)X(+) ions formed by a loss of a halogen atom are always predominant regardless of precursor ions and target metals. The observation of the predominant CH(2)X(+) ions is explained by the lowest energy levels of the fragments of CH(2)X(+) + X among the possible fragment energy levels and internal-energy distribution in HE-CAD. In the charge-inversion spectra, relative peak intensities of the negative ions formed by HE-ETD strongly depend on the precursor ions and the target metals. While the CHCl(2) (-) ion was predominant in the spectra of CH(2)Cl(2) (+) regardless of target species, the most intense peaks in those of CH(2)Br(2) (+) and CH(2)I(2) (+) were ascribed to either Br(-) or CH(2)Br(-) and either I(-) or I(2) (-), respectively, depending on the target metals. The dependence of the relative intensities of the fragment ions by HE-ETD on the precursor ions and target species are discussed on the basis of the energy levels of the neutral fragments and the narrow internal-energy distribution resulting from the near-resonant neutralization. It was demonstrated that HE-ETD using the alkali-metal targets provided rich information on the dissociation of the neutral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号