首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Magnetically aligned bicelles are increasingly being used as model membranes in solution- and solid-state NMR studies of the structure, dynamics, topology, and interaction of membrane-associated peptides and proteins. These studies commonly utilize the PISEMA pulse sequence to measure dipolar coupling and chemical shift, the two key parameters used in subsequent structural analysis. In the present study, we demonstrate that the PISEMA and other rotating-frame pulse sequences are not suitable for the measurement of long-range heteronuclear dipolar couplings, and that they provide inaccurate values when multiple protons are coupled to a 13C nucleus. Furthermore, we demonstrate that a laboratory-frame separated-local-field experiment is capable of overcoming these difficulties in magnetically aligned bicelles. An extension of this approach to accurately measure 13C-31P and 1H-31P couplings from phospholipids, which are useful to understand the interaction of molecules with the membrane, is also described. In these 2D experiments, natural abundance 13C was observed from bicelles containing DMPC and DHPC lipid molecules. As a first application, these solid-state NMR approaches were utilized to probe the membrane interaction of an antidepressant molecule, desipramine, and its location in the membrane.  相似文献   

2.
NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.  相似文献   

3.
Bicelles are a major medium form to produce weak alignment of soluble proteins for residual dipolar coupling (RDC) measurements. The obstacle to using the same type of bicelles for transmembrane proteins with solution-state NMR spectroscopy is the loss of signals due to the adhesion or penetration of the proteins into large bicelles, resulting in slow protein tumbling. In this study, weak alignment of the second and third transmembrane domains (TM23) of the human glycine receptor (GlyR) was achieved in low-q bicelles (q = DMPC/DHPC). Although protein-free bicelles with such low q would likely show isotropic properties, the insertion of TM23 induced weakly preferred orientations so that the RDC of the embedded protein can be measured. The extent of the alignment increased but the TM23 signal intensity decreased when q was varied from 0.19 to 0.60. A q of 0.50 was found to be an optimal compromise between alignment and the signal-to-noise ratio. In each pair of NMR experiments for RDC measurements, the same sample and pulse sequence were used, with one being performed at high-resolution magic-angle spinning to obtain pure J-couplings without RDC. A meaningful structure refinement in bicelles was possible by iteratively fitting the experimental RDCs to the back-calculated RDCs using the high-resolution NMR structure of GlyR TM23 in trifluoroethanol as the starting template. Combination of this method with the conventional high-resolution NMR in membrane mimicking mixtures of water and organic solvents offers an attractive way to derive structural information for membrane proteins in their native environment.  相似文献   

4.
In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15N, 13C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.  相似文献   

5.
In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.  相似文献   

6.
We present several applications of both wide-line and magic angle spinning (MAS) solid-state NMR of bicelles in which are embedded fragments of a tyrosine kinase receptor or enkephalins. The magnetically orientable bicelle membranes are shown to be of particular interest for studying the functional properties of lipids and proteins in a state that is very close to their natural environment. Quadrupolar, dipolar and chemical shielding interactions can be used to determine minute alterations of internal membrane dynamics and the orientation of peptides with respect to the membrane plane. MAS of bicelles can in turn lead to high-resolution proton spectra of hydrated membranes. Using deuterium-proton contrast methods one can then obtain pseudo-high-resolution proton spectra of peptides or proteins embedded in deuterated membranes and determine their atomic 3D structure using quasi-conventional liquid-state NMR methods.  相似文献   

7.
The structure determination of membrane proteins is one of the most challenging applications of solution NMR spectroscopy. The paucity of distance information available from the highly deuterated proteins employed requires new approaches in structure determination. Here we demonstrate that significant improvement in the structure accuracy of the membrane protein OmpA can be achieved by refinement with residual dipolar couplings (RDCs). The application of charged polyacrylamide gels allowed us to obtain two alignments and accurately measure numerous heteronuclear dipolar couplings. Furthermore, we have demonstrated that using a large set of RDCs in the refinement can yield a structure with 1 A rms deviation to the backbone of the high-resolution crystal structure. Our simulations with various data sets indicate that dipolar couplings will be critical for obtaining accurate structures of membrane proteins.  相似文献   

8.
Nonspherical particles or molecules experience an ordering effect in the presence of obstacles due to the restrictions they place on the orientation of those molecules that are in their proximity. Obstacles may be the limits of a membrane in which the molecule is embedded, oriented mesoscopic systems such as bicelles, or membrane fragments used to induce weak protein alignment in a magnetic field. The overall shape of most proteins can be described to a good approximation by an ellipsoidal particle. Here we describe and solve analytically the problem of the orientation of ellipsoidal particles by planar obstacles. Simple expressions are derived for the orientational distribution function and the order parameter. These expressions allow the analytical calculation of the residual dipolar couplings for a protein of known three-dimensional structure oriented by steric effects. The results are in good agreement with experiment and with the results of previously described simulations. However, they are obtained analytically in a fraction of the time and therefore open the possibility to include the optimization of the overall shape in the determination of three-dimensional structures using residual dipolar coupling constraints. The equations derived are general and can also be applied to problems of a completely different nature. In particular, previous equations describing the orientation of particles embedded in membranes are verified and generalized here.  相似文献   

9.
A simple solution NMR method is presented for pucker determination of five-membered rings using only residual dipolar couplings obtained in a single liquid crystalline medium, DMPC/DHPC bicelles (DMPC = dimyristoylphosphatidylcholine; DHPC = dihexanoylphosphatidylcholine). The method was applied to determine the pucker of the fructofuranosyl ring of sucrose. The results indicate a fructofuranosyl pucker phase in the 20 degrees - 70 degrees range. The pucker phases are in agreement with those from previous NMR and optical spectroscopic studies and, importantly, do not rely on empirically parametrized Karplus curves. Furthermore, the analysis implies more than one stable pucker phase and rapid ring interconversion in this range. The present results suggest that using residual dipolar couplings alone can reveal multiple conformations present in solution. Hence, when a sufficient number of residual dipolar coupling constants is measured, the outcome is a robust, reliable, and independent route for determining carbohydrate and nucleic acid structure by NMR spectroscopy.  相似文献   

10.
The liquid crystalline phase consisting of the potassium salt of the dinucleotide d(GpG) is compatible with detergents commonly used for solubilizing membrane proteins, including dodecylphosphocholine, the lysolipid 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, and small bicelles consisting of dihexanoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. The chiral nematic liquid crystalline phase of d(GpG) consists of long columns of stacked G-tetrad structures and carry a net negative charge. For water-soluble systems, the protein alignment induced by d(GpG) is very similar to that observed for liquid crystalline Pf1 bacteriophage, but of opposite sign. Alignment of the detergent-solubilized fusion domain of hemagglutinin is demonstrated to be homogeneous and stable, resulting in high quality NMR spectra suitable for the measurement of residual dipolar couplings.  相似文献   

11.
A new approach for simultaneous protein backbone resonance assignment and structure determination by NMR is introduced. This approach relies on recent advances in high-resolution NMR spectroscopy that allow observation of anisotropic interactions, such as dipolar couplings, from proteins partially aligned in field ordered media. Residual dipolar couplings are used for both geometric information and a filter in the assembly of residues in a sequential manner. Experimental data were collected in less than one week on a small redox protein, rubredoxin, that was 15N enriched but not enriched above 1% natural abundance in 13C. Given the acceleration possible with partial 13C enrichment, the protocol described should provide a very rapid route to protein structure determination. This is critical for the structural genomics initiative where protein expression and structural determination in a high-throughput manner will be needed.  相似文献   

12.
NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we describe a novel approach to the structural interpretation of dipolar couplings which is based on structural motif pattern recognition, where a predefined gapless structural template for a motif is used to search a set of residual dipolar couplings for good matches. We demonstrate the applicability of the method using synthetic and experimental data. We also provide an analysis of the statistical power of the method and the effects of order tensor frame orientation, motif size, and structural complexity on motif detection. Finally, we discuss remaining problems that must be overcome before the method can be used routinely to identify protein homologies.  相似文献   

13.
The anisotropy of nuclear spin interactions results in a unique mapping of structure to the resonance frequencies and split tings observed in NMR spectra, however, the determination of molecular structure from experimentally measured spectral parameters is complicated by angular ambiguities resulting from the symmetry properties of dipole-dipole and chemical shift interactions. This issue can be addressed through the periodicity inherent in secondary structure elements, which can be used as an index of topology. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels to map protein structure in NMR spectra of both highly and weakly aligned samples. Dipolar waves describe the periodic wavelike variations of the magnitudes of the static heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings (RDCs), in solution NMR spectra. The corresponding properties of the RDCs in solution NMR spectra of weakly aligned helices represent a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   

14.
We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.  相似文献   

15.
The association of transmembrane (TM) helices underlies membrane protein structure and folding. Structural studies of TM complexes are limited by complex stability and the often time-consuming selection of suitable membrane mimics. Here, methodology for the efficient, preparative scale construction of covalent TM complexes and the concomitant high-throughput selection of membrane mimics is introduced. For the employed integrin αIIbβ3 model system, the methodology identified phospholipid bicelles, including their specific composition, as the best membrane mimic. The method facilitates structure determination by NMR spectroscopy as exemplified by the measurement of previously inaccessible residual dipolar couplings and (15)N relaxation parameters.  相似文献   

16.
Measurement of residual dipolar couplings for membrane proteins will dramatically improve the quality of the structures obtainable by solution NMR spectroscopy. While there has been some success in achieving alignment of membrane-bound peptides, there has been very limited success in achieving alignment for functional membrane proteins. Herein, we demonstrate that charged polyacrylamide-based copolymers are suitable for obtaining weak alignment of membrane proteins reconstituted in detergent micelles. Varying the copolymer compositions, we prepared positively, zwitterionic, and negatively charged gels that are very stable at low concentration and can be used for obtaining weak alignment by compression in an NMR tube. Application of this method is demonstrated for the integral membrane protein OmpA in DPC micelles.  相似文献   

17.
NMR spectroscopy is a powerful means of studying liquid‐crystalline systems at atomic resolutions. Of the many parameters that can provide information on the dynamics and order of the systems, 1H–13C dipolar couplings are an important means of obtaining such information. Depending on the details of the molecular structure and the magnitude of the order parameters, the dipolar couplings can vary over a wide range of values. Thus the method employed to estimate the dipolar couplings should be capable of estimating both large and small dipolar couplings at the same time. For this purpose, we consider here a two‐dimensional NMR experiment that works similar to the insensitive nuclei enhanced by polarization transfer (INEPT) experiment in solution. With the incorporation of a modification proposed earlier for experiments with low radio frequency power, the scheme is observed to enable a wide range of dipolar couplings to be estimated at the same time. We utilized this approach to obtain dipolar couplings in a liquid crystal with phenyl rings attached to either end of the molecule, and estimated its local order parameters.  相似文献   

18.
This paper describes an analysis of NMR dipolar couplings in a bilayer formed by dimyristoylphosphatidylcholine (DMPC). The couplings are calculated from a trajectory generated in a molecular dynamics (MD) simulation based on a realistic atom-atom interaction potential. The analysis is carried out employing a recently developed approach that focuses on the construction of the conformational distribution function. This approach is a combination of two models, the additive potential (AP) model and the maximum entropy (ME) method, and is therefore called APME. In contrast to the AP model, the APME procedure does not require an intuition-based choice of the functional form of the torsional potential and is, unlike the ME method, applicable to weakly ordered systems. The conformational distribution function for the glycerol moiety of the DMPC molecule derived from the APME analysis of the dipolar couplings is in reasonable agreement with the "true" distributions calculated from the trajectory. Analyses of dipolar couplings derived from MD trajectories can, in general, serve as guidelines for experimental investigations of bilayers and other complex biological systems.  相似文献   

19.
1H NMR spectra of nucleoside adenosine were recorded in 7.5% (w/v) DMPC/DHPC bicelles doped with CTAB. Despite the small size of adenosine in comparison with the distances between discoidal bicelles, intramolecular 1H,1H residual dipolar couplings D were observed at 29.5–38°C. The absolute values of 1H,1H spin interactions Δ (sum of J‐ and D‐couplings) were measured selectively by a series of 2D SERF experiments as a function of temperature. At lower temperatures dipolar couplings are scaled down, which leads to simplification of the 1H NMR spectra. For some pairs of protons, which are simultaneously J‐ and D‐coupled, the exact values of D can be determined from temperature dependence of Δ. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Membrane protein orientation has traditionally been determined by NMR using mechanically or magnetically aligned samples. Here we show a new NMR approach that abolishes the need for preparing macroscopically aligned membranes. When the protein undergoes fast uniaxial rotation around the bilayer normal, the 0 degrees -frequency of the motionally averaged powder spectrum is identical to the frequency of the aligned protein whose alignment axis is along the magnetic field. Thus, one can use unoriented membranes to determine the orientation of the protein relative to the bilayer normal. We demonstrate this approach on the M2 transmembrane peptide (M2TMP) of influenza A virus, which is known to assemble into a proton-conducting tetrameric helical bundle. The fast uniaxial rotational diffusion of the M2TMP helical bundle around the membrane normal is characterized via 2H quadrupolar couplings, C-H and N-H dipolar couplings, 13C chemical shift anisotropies, and 1H T1rho relaxation times. We then show that 15N chemical shift anisotropy and N-H dipolar coupling measured on these powder samples can be analyzed to yield precise tilt angles and rotation angles of the helices. The data show that the tilt angle of the M2TMP helices depends on the membrane thickness to reduce the hydrophobic mismatch. Moreover, the orientation of a longer M2 peptide containing both the transmembrane domain and cytoplasmic residues is similar to the orientation of the transmembrane domain alone, suggesting that the transmembrane domain regulates the orientation of this protein and that structural information obtained from M2TMP may be extrapolated to the longer peptide. This powder-NMR approach for orientation determination is generally applicable and can be extended to larger membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号