首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu X  Zhang Z  Yao Y  Zhang Y  Shen Q 《Inorganic chemistry》2007,46(22):9379-9388
A series of neutral and anionic bis(phenolate) lanthanide amides were synthesized by general metathesis reactions, and their reactivity was explored. Protolytic ligand exchange reactions of MBMPH2 (MBMP = 2,2'-methylene bis(6-tert-butyl-4-methyl-phenolate)) with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 (TMS = SiMe3) afforded the desired bridged bis(phenolate) lanthanide chlorides [(MBMP)Ln(mu-Cl)(THF)2]2 [Ln = Nd (1), Yb (2)] in high isolated yields. These lanthanide chlorides were found to be useful precursors for the synthesis of the corresponding lanthanide derivatives. Reactions of 1 and 2 with 2 equiv of NaN(TMS)2 in THF produced the expected neutral bis(phenolate) lanthanide amido complexes (MBMP)Ln[N(TMS)2](THF)2 [Ln = Nd (3), Yb (4)] in high yields. Whereas the reactions of 1 and 2 with LiN(TMS)2 in a 1:4 molar ratio gave the anionic bis(phenolate) lanthanide amides as discrete ion-pair complexes [Li(THF)4][(MBMP)Ln{N(TMS)2}2] [Ln = Nd (5), Yb (6)] in high isolated yields. Further study revealed that 5 and 6 can also be conveniently synthesized in high yields by the direct reactions of MBMPH2 with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 in a 2:1 molar ratio, and then with 4 equiv of nBuLi. The reactivity of the neutral and anionic bis(phenolate) lanthanide amides was comparatively investigated. It was found that the insertion reactions of carbodiimide into the Ln-N bond of neutral lanthanide amido complexes 3 and 4 gave the anticipated bis(phenolate) lanthanide guanidinate complexes [(mu-O-MBMP)Nd{(iPrN)2CN(TMS)2}]2 (7) and (MBMP)Yb[(iPrN)2CN(TMS)2] (8), respectively, in high yields, whereas the similar reaction of carbodiimide with anionic amido complex 5 provided the unexpected ligand-redistributed products, and the homoleptic ion-pair bis(phenolate) neodymium complex [Li(DME)2(THF)][(MBMP)2Nd(THF)2] (9) was finally isolated as one of the products. Furthermore, the anionic bis(phenolate) lanthanide amides showed higher catalytic activity for the polymerization of epsilon-caprolactone than the neutral ones. All of the complexes were characterized with elemental analysis and IR spectra, and the definitive molecular structures of 1-3 and 5-9 were provided by single-crystal X-ray analyses.  相似文献   

2.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

3.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

4.
[Ln[N(SiMe3)2]2(THF)2](Ln = Sm, Yb) reacts with 1 equiv. of carbon-bridged biphenols, 2,2'-methylene-bis(6-tert-butyl-4-methylphenol)(L1H2) or 2,2'-ethylidene-bis(4,6-di-tert-butylphenol)(L2H2), in toluene to give the novel aryloxide lanthanide(II) complexes [[LnL1(THF)n]2](Ln = Sm, n = 3 (1); Ln = Yb, n = 2 (2)) and [[LnL2(THF)3]2](Ln = Sm (5); Ln = Yb (6)) in quantitative yield, respectively. Addition of 2 equiv. of hexamethylphosphoric triamide (HMPA) to a tetrahydrofuran (THF) solution of 1, 2 and 5 affords the corresponding HMPA-coordinated complexes, [[LnL1(THF)m(HMPA)n]2(THF)y](Ln = Sm, n = 2, m = 0, y = 2 (3); Ln = Yb, m = 1, n = 1, y = 6 (4)) and [[SmL2(HMPA)2]2](7) in excellent yields. The single-crystal structural analyses of 3, 4 and 7 revealed that these aryloxide lanthanide(II) complexes are dimeric with two Ln-O bridges. The coordination geometry of each lanthanide metal can be best described as a distorted trigonal bipyramid. Complexes 1-3, 5 and 7 can catalyze the ring-opening polymerization of epsilon-caprolactone (epsilon-CL), and 1-3, along with 5 show moderate activity for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) and the copolymerization of epsilon-CL and DTC to give random copolymers with high molecular weights and relatively narrow molecular weight distributions..  相似文献   

5.
A series of lanthanide amide complexes supported by bridged bis(amidinate) ligand L, LLnNHAr(1)(DME) (L = [Me(3)SiNC(Ph)N(CH(2))(3)NC(Ph)NSiMe(3)], Ar(1) = 2,6-(i)Pr(2)C(6)H(3), DME = dimethoxyethane, Ln = Y (1), Pr (2), Nd (3), Gd (4), Yb (5)), [Yb(μ(2)-NHPh)](2)(μ(2)-L)(2) (6) and [LYb](2)(μ(2)-NHAr(2))(2) (7) (Ar(2) = (o-OMe)C(6)H(4)), were synthesized by reaction of LLnCl(THF)(2) with the corresponding lithium amide in good yields and structurally characterized by X-ray crystal structure analyses. All complexes were found to be precatalysts for the catalytic addition of aromatic amines to aromatic nitriles to give monosubstituted N-arylamidines. The catalytic activity was influenced by lanthanide metals and the amido groups with the active sequence of Y (1) < Gd (4) < Nd (3) < Pr (2) ~ Yb (5) for the lanthanide metals and -NHAr(2) < -NHPh < -NHAr(1) for the amido groups. The catalytic addition reaction with complex 5 showed a good scope of aromatic amines. Some key reaction intermediates were isolated and structurally characterized, including the amidinate complexes LLn[NPhCNAr(1)](PhCN) (Ln = Y (8), Ln = Yb (9)), LYb[NAr(2)CNAr(1)](Ar(2)CN) (10), and amide complex 5 prepared by protonation of 9 by Ar(1)NH(2). Reactivity studies of these complexes suggest that the present catalytic formation of monosubstituted N-arylamidines proceeds through nucleophilic addition of an amido species to a nitrile, followed by amine protonolysis of the resultant amidinate species.  相似文献   

6.
Han F  Teng Q  Zhang Y  Wang Y  Shen Q 《Inorganic chemistry》2011,50(6):2634-2643
The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y < Nd < La. The amine elimination of Ln[N(TMS)(2)](3) with the bulky bidentate Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Pr(i)(2)-C(6)H(3)) afforded the monoamido lanthanide complexes L'(2)LnN(TMS)(2) (Ln = Yb (9), Y (10), Nd (11), and La (12)). While the amine elimination with the less bulky Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Me(2)-C(6)H(3)) yielded the desired monoamido complexes with the small metals of Y and Yb, L'(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L'(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.  相似文献   

7.
Zhu X  Wang S  Zhou S  Wei Y  Zhang L  Wang F  Feng Z  Guo L  Mu X 《Inorganic chemistry》2012,51(13):7134-7143
Two series of new lanthanide amido complexes supported by bis(indolyl) ligands with amino-coordinate-lithium as a bridge were synthesized and characterized. The interactions of [(Me(3)Si)(2)N](3)Ln(III)(μ-Cl)Li(THF)(3) with 2 equiv of 3-(CyNHCH(2))C(8)H(5)NH in toluene produced the amino-coordinate-lithium bridged bis(indolyl) lanthanide amides [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] (Cy = cyclohexyl, Ind = Indolyl, Ln = Sm (1), Eu (2), Dy (3), Yb (4)) in good yields. Treatment of [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] with THF gave new lanthanide amido complexes [μ-{[η(1):η(1)-3-(CyNHCH(2))Ind](2)Li(THF)}Ln[N(SiMe(3))(2)](2)] (Ln = Eu (5), Dy (6), Yb (7)), which can be transferred to amido complexes 2, 3, and 4 by reflux the corresponding complexes in toluene. Thus, two series of rare-earth-metal amides could be reciprocally transformed easily by merely changing the solvent in the reactions. All new complexes 1-7 are fully characterized including X-ray structural determination. The catalytic activities of these new lanthanide amido complexes for hydrophosphonylation of both aromatic and aliphatic aldehydes and various substituted aldimines were explored. The results indicated that these complexes displayed a high catalytic activity for the C-P bond formation with employment of low catalyst loadings (0.1 mol?% for aldehydes and 1 mol?% for aldimines) under mild conditions. Thus, it provides a convenient way to prepare both α-hydroxy and α-amino phosphonates.  相似文献   

8.
The synthesis and structures of lanthanide complexes supported by benzoxazine-functionalized amine bridged bis(phenolate) ligand 6,6'-(2-(8-tert-butyl-6-methyl-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethylazanediyl)bis(methylene)bis(2-tert-butyl-4-methylphenolato) (L(2-)) are described. Salt metathesis reaction between lanthanide trichloride and 2 eq of LNa(2) in THF at room temperature afforded the corresponding "ate" complexes [L(2)LnNa(THF)(2)] (Ln[double bond, length as m-dash]Y (1), Nd (2), Er (3), Yb (4)). Further treatment of the product with 18-crown-6 afforded discrete ion-pair complexes [L(2)Ln][(18-crown-6)Na(THF)(2)] (Ln[double bond, length as m-dash]Y (5), Yb (6)). The single-crystal structural analyses of 1 and 3-6 revealed that the lanthanide cation and the sodium cation were bridged by two phenolate oxygen atoms in complexes 1, 3 and 4, while in complexes 5 and 6, the anion comprises a lanthanide cation coordinated by two L(2-) and the cation is comprised of a sodium cation surrounded by an 18-crown-6 and two THF molecules. These complexes were found to exhibit distinct activities towards the ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

9.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

10.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

11.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

12.
Peng H  Zhang Z  Qi R  Yao Y  Zhang Y  Shen Q  Cheng Y 《Inorganic chemistry》2008,47(21):9828-9835
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield. Compound 1 reacted with excess NaH to afford the novel sodium cluster [LNa2(THF)2]4 (2) in good isolated yield. Structure determination revealed that complex 2 has the 22-vertex cage structure. Reactions of complex 2 with anhydrous LnCl3 in a 1:4 molar ratio, after workup, gave the desired lanthanide chlorides [LLnCl(DME)]2 [Ln = Y (3), Yb (4), Tb (5)] as dimers. A further study revealed that complexes 3-5 are inert for chlorine substitution reactions. (ArO)3Ln(THF) (ArO = 2,6-Bu(t)2-4-MeC6H2O) reacted with compound 1 in a 1:1 molar ratio in tetrahydrofuran (THF), after workup, to give the desired rare-earth metal aryloxides as dimers [LLn(OAr)(THF)]2 [Ln = Nd (6), Sm (7), Yb (8), Y (9)] in high isolated yields. All of these complexes are well characterized, and the definitive molecular structures of complexes 2 and 4-6 were determined. It was found that complexes 6-9 can be used as efficient initiators for L-lactide polymerization, and the ionic radii of the central metals have a significant effect on the catalytic activity.  相似文献   

13.
Chen X  Lim S  Plecnik CE  Liu S  Du B  Meyers EA  Shore SG 《Inorganic chemistry》2005,44(17):6052-6061
The divalent lanthanide bis((cyclooctane-1,5-diyl)dihydroborate) complexes {K(THF)4}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 3; Yb, 4) were prepared by a metathesis reaction between (THF)(x)LnCl2 and K[H2BC8H14] in THF in a 1:4 molar ratio. Although the reaction ratios were varied between 1:3 and 1:6, complexes 3 and 4 were the only lanthanide 9-BBN hydroborates produced. Because of disorder of THF in crystals of 3 and 4, good single-crystal X-ray structural data could not be obtained. However, when the potassium cation was replaced by the tetramethylammonium cation or when MeTHF (2-methyltetrahydrofuran) was employed in place of THF, good quality crystals were obtained. Complexes [NMe4]2[Ln{(mu-H)2BC8H14}4] (Ln = Eu, 5; Yb, 6) were afforded by metathesis reactions of NMe4Cl with 3 and 4 in situ. On the basis of the single-crystal X-ray diffraction analysis, the four 9-BBN tetrahydroborate ligands are tetrahedrally arranged around the lanthanide cation in 5 and 6. The two structures differ in that one alpha-C-H bond from each of the four {(mu-H)2BC8H14}4 units exhibits an agostic interaction with Eu(II) in 5 but, in complex 6, only two of the alpha-C-H bonds form agostic interactions with Yb(II). Complexes {K(MeTHF)3}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 7; Yb, 8) were produced by employing MeTHF in place of THF. The structures of 7 and 8 display connectivity between the anion {Ln{(mu-H)2BC8H14}4}2- and the cation {K(MeTHF)3}+, in which the potassium not only interacts directly with the hydrogens of the Ln-H-B bridged bonds but is also involved in agostic interactions with alpha-C-H bonds. By systematically examining the structures of complexes 3-8 and taking into account the previously reported complexes (THF)4Ln{(mu-H)2BC8H14}2 (Ln = Eu, 1; Yb, 2), it is concluded that Eu(II) appears to have a better ability to form agostic interactions than Yb(II) because of its larger size, even though Yb(II) has a higher positive charge density.  相似文献   

14.
钱长涛  王兵  邓道利 《有机化学》1994,14(3):265-269
本文通过双(2-甲氧乙基环戊二烯基)稀土氯化物与环戊二烯基钠在室温下反应, 经升华得新配合物,(CH~3OCH~2CH~2C~5H~4)~2Ln(C~5H~5) (Ln=La,Pr,Nd), 这些配合物都经红外、光电子能谱、质谱、核磁共振谱和元素分析鉴定;并且比较了具有不同配位环境的三茂稀土配合物-氢化钠体系还原1-己烯的活性。  相似文献   

15.
Ma H  Spaniol TP  Okuda J 《Inorganic chemistry》2008,47(8):3328-3339
Monomeric yttrium and lutetium bis(phenolato) complexes [Ln(OSSO){N(SiHMe 2) 2}(THF)] (Ln = Y, Lu) were prepared from the reaction of silylamido complexes [Ln{N(SiHMe 2) 2} 3(THF) 2] with 1 equiv of tetradentate 1,omega-dithiaalkanediyl-bridged bis(phenol) (OSSO)H 2 1- 9 in moderate to high yields. In contrast to the rigid configuration of scandium analogues, the yttrium complexes 2b and 3b and the lutetium complex 3c that contain a C 2 bridge between the two sulfur donors of the ligand are symmetric in solution. The monomeric nature of these complexes was indicated by an X-ray diffraction study of the yttrium complex 6b. The yttrium center in 6b is coordinated to the tetradentate [OSSO]-type ligand, one silylamido group and one THF ligand with the two oxygen donors of the [OSSO]-type ligand located trans. Corresponding bis(phenolato) silylamido complexes of larger rare-earth metals could not be obtained from similar reactions: Reaction of [La{N(SiHMe 2) 2} 3(THF) 2] with 1,2-xylylene-linked bis(phenol) gave a dinuclear lanthanum complex 6d of the formula [La 2(OSSO) 3] with two inequivalent eight-coordinate metal centers. The yttrium and lutetium complexes efficiently initiated the ring-opening polymerization (ROP) of lactides in THF. The heteroselectivity during the ROP of rac-lactide was enhanced when the steric demand of the bis(phenolato) ligand was increased, either by extending the bridge length or by introducing bulky ortho-substituents in the phenoxy units. A C 3 bridge within the ligand backbone is essential to allow configurational interconversion of the active site between Lambda and Delta configuration during polymerization, allowing accommodation of both enantiomers of the monomer in an alternating fashion.  相似文献   

16.
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.  相似文献   

17.
Lanthanide bis((cyclooctane-1,5-diyl)dihydroborate) complexes (THF)(4)Ln[(micro-H)(2)BC(8)H(14)](2) (Ln = Eu, 1; Yb, 2) were synthesized by a metathesis reaction between (THF)(x)()LnCl(2) and K[H(2)BC(8)H(14)] in THF in a 1:2 molar ratio. Attempts to prepare the monosubstituted lanthanide cyclic organohydroborates (THF)(x)LnCl[(micro-H)(2)BC(8)H(14)] were unsuccessful. On the basis of the molecular structure and IR spectrum of 1, there is an agostic interaction between Eu(II) and one of the alpha-C-H hydrogens from the [(micro-H)(2)BC(8)H(14)] unit. No such interaction was observed for 2. The coordinated THF in 1 and 2 can be removed under dynamic vacuum, but the solvent ligands remain bound to Yb when 2 is directly dissolved in Et(2)O or toluene. In strong Lewis basic solvents, such as pyridine or CH(3)CN, attack of the Yb-H-B bridge bonds results. Decomposition of 2 to the 9-BBN dimer in CD(2)Cl(2) was observed by (11)B and (1)H NMR spectroscopies. Compound 2 was reacted with 2 equiv of the hydride ion abstracting reagent B(C(6)F(5))(3) to afford the solvent-separated ion pair [Yb(THF)(6)][HB(C(6)F(5))(3)](2) (3). Complexes 1, 2, and 3 were characterized by single-crystal X-ray diffraction analysis. Crystal data: 1 is orthorhombic, Pna2(1), a = 21.975(1) A, b = 9.310(1) A, c = 16.816(1) A, Z = 4; 2 is triclinic, P1, a = 9.862(1) A, b = 10.227(1) A, c = 10.476(1) A, alpha = 69.87(1) degrees, beta = 76.63(1) degrees, gamma = 66.12(1) degrees, Z = 1; 3.Et(2)O is triclinic, P1, a = 13.708(1) A, b = 14.946(1) A, c = 17.177(1) A, alpha = 81.01(1) degrees, beta = 88.32(1) degrees, gamma = 88.54(1) degrees, Z = 2.  相似文献   

18.
An unprecedented Nd[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N=C(CH(3))](2)(C(5)H(3)N)]NdI(2)(THF) (1) complex was prepared by oxidizing metallic Nd with I(2) in THF and in the presence of 2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N=C(CH(3))](2)(C(5)H(3)N). The magnetic behavior at variable T clearly indicated that the complex should be regarded as a trivalent Nd atom antiferromagnetically coupled to a radical anion. By using the doubly deprotonated form of the diimino pyridine ligand [[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N-C=CH(2)](2)(C(5)H(3)N)](2-) (2) the corresponding trivalent complexes [[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N-C=CH(2)](2)(C(5)H(3)N)]Ln (THF)](mu-Cl)(2)[Li(THF)(2)].0.5 (hexane) [Ln = Nd (3), La (4)] were obtained and characterized. Reduction of these species afforded electron transfer to the ligand system which gave ligand dimerization via C-C bond formation through one of the two ene-amido functions of each molecule. The resulting dinuclear [[([2,6-(i-Pr)(2)C(6)H(5)]N-C=(CH(2)))(C(5)H(3)N)([2,6-(i-Pr)(2)C(6)H(5)]N=CCH(2))]Ln(THF)(2)(mu-Cl)[Li(THF)(3)])(2).2(THF) [Ln = Nd (5), La (6)] were isolated and characterized.  相似文献   

19.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

20.
Pi C  Liu R  Zheng P  Chen Z  Zhou X 《Inorganic chemistry》2007,46(13):5252-5259
The dinuclear ytterbium pyridyl diamido complexes [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,6)] (1a) and [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,3)] (1b) are easily prepared by protonolysis of Cp(3)Yb with 0.5 equiv of the corresponding diaminopyridine in accepted yields, respectively. Treatment of 1a with 2 equiv of dicyclohexylcarbodiimide (CyN=C=NCy) in THF at low temperature leads to the isolation of the formal double N-H addition product (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyN(CyNH)CN)(2)(C(5)H(3)N-2,6)] (2) in 42% yield. Compound 2 is unstable to heat and slowly isomerized to the mixed neutral/dianionic diguanidinate complex (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyNH)(2)CN(C(5)H(3)N-2,6)NC(NCy)(2)](THF) (3) at room temperature. Similarly, treatment of 1b with 2 equiv of CyN=C=NCy gives the addition/ isomerization product (Cp(2)Yb)(2)[mu-eta(2):eta(2):eta(1)-(CyNH)(2)CN(C(5)H(3)N-2,3)NC(NCy)(2)] (4). Moreover, the reaction of various ytterbium aryl diamido complexes (prepared in situ from [Cp(2)YbMe](2) and aryldiamine, respectively) with CyN=C=NCy affords the corresponding addition products (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,4)] (5), (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,3)](6), and (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(13)H(8)-2,7)] (7), respectively. In contrast to pyridyl-bridged bis(guanidinate monoanion) complexes, aryl-bridged bis(guanidinate monoanion) complexes 5-7 are stable even with prolonged heating at 110 degrees C. All the results not only demonstrate that the presence of the pyridyl bridge can impart the diamido complexes with a unique reactivity and initiate the unexpected reaction sequence but also indicate evidently that the number and distribution of negative charges of the diguanidinate ligand is tunable from double monoanionic units to mixed neutral/dianionic isomers. All the complexes are characterized by elemental analysis and IR spectroscopies. The structures of complexes 1a, 3, 5, 6, and 7 are also determined through X-ray single-crystal diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号