首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了分析压杆失稳的临界力与失稳后杆件屈服形态的关系,在理论推导和试验研究的基础上,提出了通过捕捉细长压杆失稳时的失稳点来确定压杆临界力的分析方法,通过测量细长压杆失稳时微弯状态下杆端的纵向位移,求得临界压力的大小. 文中将该方法的实验结果与直接用欧拉公式计算的临界压力进行了比较,结果表明,考虑细长压杆微弯状态时杆端的纵向位移所得到的失稳的临界压力值大于利用欧拉公式计算的临界压力值.  相似文献   

2.
A beam theory for the stability analysis of short beam that includes shear deformation and warping of the cross-section is developed. The warping of the cross-section is taken to be an independent kinematics quantity and corresponding force resultants are defined. For the beam subjected to the external loading only at the ends of the beam, equilibrium equations have been obtained by the principle of virtual work. The variations of lateral displacement, rotational angle of the cross-section and the multiplier of the warping shape along the beam axis are solved in closed form and expressed in terms of deformation quantities at the ends of the beam. Based on this beam theory, the lateral stiffness of the beam sustained an axial compression force and a lateral shear force at one end is explicitly derived, from which the equation of the buckling load is established and the buckling load can be solved. When the effect of cross-section warping is neglected, the derived lateral stiffness and buckling load converge to the solutions of the Haringx theory.  相似文献   

3.
The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model. A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs, and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions. It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions, except for nanotubes with smaller radii and very small aspect ratio. The associated buckling modes for different layers of MWNTs are in-phase, and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs. Moreover, for simply supported boundary conditions, the critical buckling load is compared with the corresponding one for axial compressive buckling, which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling. In particular, for axial compressive buckling of double-walled carbon nanotubes, an analytical expression is given for approximating the critical buckling load. The present investigation may be of some help in further understanding the mechanical properties of MWNTs.  相似文献   

4.
尤明庆 《力学季刊》2019,40(1):160-166
细直杆件在压应力作用下会产生横向屈曲即失稳.直杆撞击刚性平面或拉断卸载后将形成压缩波,因承载压缩载荷的长度增加可以引起失稳.冲击速度转换的压应力沿着杆件切线方向,该处弯矩和剪力为零;而众多文献设定的失稳段固支边界条件并不准确.基于精确的杆件变形曲率方程得到端部载荷指向杆件中固定点时的受压失稳条件,得到其极限状态即载荷沿杆端切向作用时失稳长度相当于两端简支的1.5 倍.对于钢丝绳拉断形成的冲击失稳,载荷恒定而长度增加,可以产生高阶屈曲即在侧向出现多次曲折,并基于尼龙-橡胶带的模拟试验给出了定性说明.  相似文献   

5.
The vibration and buckling of an infinite shear beam-column, which considers the effects of shear and the axial compressive force, resting on an elastic foundation have been investigated when the system is subjected to moving loads of either constant amplitude or harmonic amplitude variation with a constant advance velocity. Damping of a linear hysteretic nature for the foundation was considered. Formulations in the transformed field domains of time and moving space were developed, and the response to moving loads of constant amplitude and the steady-state response to moving harmonic loads were obtained using a Fourier transform. Analyses were performed to examine how the shear deformation of the beam and the axial compression affect the stability and vibration of the system, and to investigate the effects of various parameters, such as the load velocity, load frequency, shear rigidity, and damping, on the deflected shape, maximum displacement, and critical values of the velocity, frequency, and axial compression. Expressions to predict the critical (resonance) velocity, critical frequency, and axial buckling force were proposed.  相似文献   

6.
A two-dimensional linear spring model is established to study the microbuckling of a plane monomolecular layer adhering to a substrate. The model is for the layer subjected to a compressive load having an arbitrary angle with the chemical bond of the layer. The effects of the load angle, the strength of adhesion and the bending stiffness and shearing stiffness (the capability of resisting transverse bending and in-plane shearing) of the layer on the minimal buckling force and the critical buckling mode are discussed. It is found that the minimal buckling force increases with increasing load angle and, for a given bending stiffness, increases with increasing strength of adhesion and decreasing shearing stiffness. Furthermore, a critical condition under which the buckling of the layer can just occur is obtained, which is helpful to avoid buckling in an engineering application. The project supported by the National Distinguished Young Scientist Fund, Cheung Kong Scholars Programme, the National Natural Science Foundation of China (10272082, 10172068) and Shanghai Postdoctoral Science Foundation  相似文献   

7.
基于Hamilton 原理,运用假设时间模态法,得到了弹性基础上压杆的横向非线性自由振动与屈曲的位移型常微分控制方程. 考虑一端固定另一端可移简支边界条件,采用打靶法得到了结构第一至第三阶结构频率与一阶屈曲载荷的数值结果. 结果表明:随轴心压力增加,结构频率减小;随弹性基础刚度增加,结构频率与屈曲载荷均增加;弹性基础刚度对结构频率的影响随振型阶数增加在减小;在小振幅的情形下,不同振型对一阶屈曲载荷的影响很小.  相似文献   

8.
The partially embedded submarine pipelines might buckle laterally at some segments under high pressure and high temperature (HP/HT) conditions. The buckling pattern localization introduces an extra level of analytical complexity when compared with the periodic buckling pattern. In the presented paper the lateral buckling pipeline is modeled by an axial compressive beam supported by lateral distributing nonlinear springs taking the soil berm effects in the horizontal plane. It is found that the model is governed by a time-independent Swift–Hohenberg equation. Based on John Burke and Edgar Knobloch’s work we conclude preliminarily that the equation will have localized solutions. Besides the qualitative conclusion, by AUTO 07P the localized solutions of the equation are studied in detail. The snakes-and-ladders structure of localized solutions explains the transition of buckling modes in theory. The range of the possible critical axial forces is found out. Meanwhile two critical axial force formulas corresponding to the range ends are presented. Finally a typical submarine pipeline is analyzed as an illustration.  相似文献   

9.
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler–Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.  相似文献   

10.
We present a theory to reveal for the first time the distinct mechanisms by which a compressed rod confined in a channel buckles in the presence of dry friction. Contrary to the case of a frictionless contact, with friction the system can bear substantially enhanced compressive load without buckling after its stiffness turns negative, and the onset of instability is strongly affected by the amount of perturbation set by the environment. Our theory, confirmed by simulations, shows that friction enhances stability by opening a wide stable zone in the perturbation space. Buckling is initiated when the applied compressive force is such that the boundary of the stable zone touches a point set by the environment, at a much higher critical load. Furthermore, our analysis shows that friction has a strong effect on the buckling mode; an increase in friction is found to lead to higher buckling modes.  相似文献   

11.
The lateral buckling and helical buckling problem of a circular cylinder constrained by an inclined circular cylinder under a compressive force, torsion, and its own weight is complicated and difficult to obtain an exact analytical solution. Thus, the non-linear differential equation is solved incrementally using the discrete singular convolution (DSC) algorithm together with the Newton–Raphson method. Detailed formulations are worked out. A simple way to numerically simulate the helical buckling is proposed and solution procedures are given. Four examples with various inclined angles, weights per unit length of the inner cylinder, axial applied loads, and boundary conditions are investigated. To verify the formulations and solution procedures, comparisons are firstly made with data obtained using the finite element method. It is verified that under certain circumstance, only lateral or helical buckling alone will occur. On some other circumstance, both lateral buckling and helical buckling may occur and the critical helical buckling loads are higher than the critical lateral buckling loads if frictions are not considered. Some conclusions are made based on the results presented herein.  相似文献   

12.
本文参考Hexcel公司生产的各种规格的金属蜂窝芯,讨论了金属蜂窝芯夹层板承受单轴面外压力时的屈曲模式,发现大多数商用金属蜂窝夹层板受到面外压力作用时发生弹塑性屈曲。基于二维蜂窝结构的代表性单元,建立了金属蜂窝材料弹塑性屈曲的力学模型,进而推导出其临界应力显式公式。该公式反映了蜂窝材料的几何特征及其母材的力学性能,并通过单参数表征金属蜂窝材料的弹塑性屈曲特性。本文还探讨了相对密度和开度角对金属蜂窝材料弹塑性屈曲值的影响规律。最后,通过与已有理论结果和实验结果的比较证实:本文采用的屈曲模式合理,与实验测定值符合较好表明理论预测公式有一定应用价值。  相似文献   

13.
Yeast cells can be regarded as micron-sized and liquid-filled cylindrical shells. Owing to the rigid cell walls, yeast cells can bear compressive forces produced during the biotechnological process chain. However, when the compressive forces applied on the yeast go beyond a critical value, mechanical buckling will occur. Since the buckling of the yeast can change the networks in its cellular control, the experimental research of the buckling of the yeast has received considerable attention recently. In this paper, we apply a viscoelastic shell model to study the buckling of the yeast. Meanwhile, the turgor pressure in the yeast due to the internal liquid is taken into account as well. The governing equations are based on the first-order shear deformation theory. The critical axial compressive force in the phase space is obtained by the Laplace transformation, and the Bellman numerical inversion method is then applied to the analytical result to obtain the corresponding numerical results in the physical phase. The concepts of instantaneous critical buckling force, durable critical buckling force, and delay buckling are set up in this paper. And the effects of the transverse shear deformation and the turgor pressure on the buckling phenomena are also given. The numerical results show that the transverse shearing effect will decrease the instantaneous critical buckling force and the durable critical buckling force, while the turgor pressure will increase both of them.  相似文献   

14.
对桁架结构稳定分析经典理论的讨论   总被引:7,自引:1,他引:6  
通过算例讨论了桁架结构稳定分析的经典理论,指出用该理论算出的临界荷载远远大于屈曲临界荷载,而且压杆的应力远远超过压缩强度极限。文中分析了问题的来源,提出了桁架结构临界荷载的屈曲理论计算方法,通过比较说明了屈曲理论的正确性。  相似文献   

15.
This paper addresses a method for shape design sensitivity analysis of a buckling load in a continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis in this paper because solid elements can generally be used for any kind of structure whether it is thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. Sensitivity is then computed by using the mathematical package MATLAB with the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section and bottle shaped column are chosen in order to illustrate the efficiency of the presented method.  相似文献   

16.
We study the buckling of a one fiber composite whose matrix stiffness is slightly dependent on the compressive force. We show that the equilibrium curves of the system exhibit a limit load when the induced stiffness parameter gets bigger than a threshold. This limit load increases when the stiffness parameter is increasing and it is related to a possible localized path in the post-buckling domain. Such a change in the maximum load may be very desirable from a structural stand point.  相似文献   

17.
Mechanical characterization of sub-micron thin films or similar small scale structures have been a continuous challenge to the mechanics community due to the difficulty in accurately quantizing the applied load and the resulted deformation. In this paper, a new force-domain analog-to-digital converter (F-D ADC) created from the concept of Flash ADC in electronics is developed to perform thin film tensile tests. The key component of the F-D ADC is a quantizer-array of microfabricated buckling beams of varying lengths. During testing, the tensile force applied in the test specimen is converted to the compressive force in the quantizer beam array and digitized by using the critical buckling load of the beams as they progressively buckle with increasing force amplitude. The deformation of the specimen is controlled by the piezoelectric actuator. Successful testing of (110) single crystal silicon and titanium/nickel (Ti/Ni) multilayer thin film specimens demonstrated the feasibility of this novel F-D ADC concept.  相似文献   

18.
A recently developed high speed test track for the Linear Induction Motor (LIM) Vehicle at Pueblo, Colorado consists of a welded railroad track supplemented by a continuous reaction rail. Due to constrained thermal expansions, high axial compressive forces may occur in this rail. Since the reaction rail is a relatively slender plate, high axial forces may affect its lateral stability and dynamic characteristics. In this paper the stability of the reaction rail due to axial compressive force is studied first. Following this, the effect of axial forces upon the critical velocity of a moving lateral load is studied.Included in the analysis are representations of the rail, both as an isotropic and orthotropic entity. The moving lateral load applied to the rail is assumed to be a concentrated force, acting first at the top of the reaction rail, and then at two arbitrary points.  相似文献   

19.
增材制造工艺的出现使得轴向变截面点阵结构设计成为可能,变截面点阵的刚度、强度和稳定性等力学行为研究具有重要的工程意义。假定杆件横截面沿轴向呈双曲线或椭圆型变化,积分推导变截面对于杆件刚度产生的影响,在平衡方程中进行参数变换,推导出变截面对于杆件失稳特征值的解析解,并最终将椭圆型截面杆件应用于实际的金字塔点阵设计。最后引入了特征值算法和弧长法,前者证实了解析解的正确性,后者用于计算含几何缺陷的金字塔胞元后屈曲行为。解析解与数值方法均表明,对于相对密度较低的金字塔点阵,椭圆型轴向变截面杆件设计可以使得点阵刚度在基本保持不变的情况下,有效提高点阵等效压缩强度。研究结果可以为高性能变截面点阵的设计提供理论基础。  相似文献   

20.
Two methods for determining the location of and load level to produce instability of compressed cylindrical shells are presented. The first relates the variation in the wall normal stiffness as a function of applied compressive force to the critical load. It uses the distribution of stiffness over the surface of the shell as a guide to buckle location. The second method associates the local dynamic mass with instability behavior. The test data presented show that either method will give excellent prediction capability from low-load-level data for shells of orthodox form. Neither method appears to apply to spirally stiffened shells. This is thought to be due to the fact that there is a substantial difference between the buckle pattern under axial compression and the imperfection shape induced by the normal displacement which is used to ascertain the wall stiffness and the dynamic mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号