首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用电化学阳极氧化法在纯Ti基底上制备高度有序的TiO2纳米管阵列,考察了Ti/TiO2光阳极的光电化学响应.以苯酚溶液为目标污染物,研究Ti/TiO2电极的光电催化性能,并与光催化性能进行比较.结果表明,该电极光电催化性能优于光催化性能.施加0.6 V电压时,光电催化性能最好.电化学阻抗谱分析显示,光电催化和光催化降解过程的速控步骤均为表面反应步骤,外加偏压减小了界面电荷转移阻抗,提高了光生载流子的分离效率.  相似文献   

2.
A novel electrode was prepared by forming TiO2 thin films using a commercially available TiO2 powder (Degussa P25) on graphite plates for water photoelectrocatalytic decontamination. In addition to, for the first time the photoelectrochemical degradation of 3,4‐dichlorophenol was investigated. The effects of applied potential, pH, and initial 3,4‐dichlorophenol concentration on the photoelectrocatalytic (PEC) degradation of 3,4‐dichlorophenol using ultraviolet (UV) illuminated TiO2/graphite (TiO2/C) thin film electrode was examined and discussed. Also, direct photolysis (DP), electrochemical oxidation (EC), photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of 3,4‐dichlorophenol were compared. Results show that the best responses for PEC are obtained at applied potential 1.2 V versus reference electrode, pH 8.0 and initial 3,4‐dichlorophenol concentration 6.7 mg L?1.  相似文献   

3.
A unique photoelectrochemical circuit system was constructed by connecting a rod-type TiO2 electrode with a Pt electrode through a silicon solar cell. The photoelectrochemical circuit system efficiently oxidized ethanethiol in water into CO2, while the reaction rate strongly depended on the calcination temperature of the rod-type TiO2 electrode. Furthermore, it was found that a negative bias applied to the rod-type TiO2 electrode by a silicon solar cell enhances the oxidation rate of ethanethiol in water.  相似文献   

4.
Titanium dioxide is a promising catalyst for application in the photodegradation of organic pollutants in water due to its powerful oxidising property and long-term photostability. This study presents the production of titanium dioxide using the sol-gel process, dye sensitisation of the TiO2 electrode, and the performance of that cell. Sensitisation of titanium dioxide was performed using a dye, i.e., Fe(II)-polypyridyl complexes. The photoelectrocatalytic degradation of rhodamine B (RB) using ITO/TiO2/dye as electrode was investigated via a series of potentials, from +1.0 V to ?1.0 V, and at various pH and NaCl concentration values (ITO is indium tin oxide conductive glass). The photoelectrocatalytic degradation of RB was performed with a visible light lamp. The change in the absorbance of RB with various potentials indicated that the absorbance of RB in solution systems with the sensitised TiO2 electrodes decreased with increasing anodic potential bias. The degradation cell exhibited better performance when the positive anodic bias was applied. The pH values of RB in solution systems also influence the photoelectrodegradation process because of the different RB species present. NaCl concentration also affects the activity of RB photoelectrocatalytic degradation due to changes in the ionic strength character of the electrolyte.  相似文献   

5.
Titanium dioxide (TiO2) thin films have been prepared on indium doped tin oxide (ITO) glass by sol-gel dip-coating method. Properties of the films were determined as a function of heat-treatment by X-ray diffraction, scanning electron microscopy and photoelectrochemical tests. The films heat-treated at higher temperatures show better crystallinity and photoresponse. The microscopic structure on the film after heat-treatment is attributed to the incorporation of organic polymer into the precursor solution. The performance of the electrodes treated at different temperature on photoelectrocatalytic degradation of methyl orange was investigated. The effect of applied potential and the ability of the electrode to be repeatedly used in photoelectrocatalytic degradation were also evaluated.  相似文献   

6.
The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO2 nanotube arrays (TiO2 NTs) were fabricated by a two-step anodization method. The TiO2 NTs prepared in two-step anodization process (2-step TiO2 NTs) showed much better surface smoothness and tube orderliness than TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO2 NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting.  相似文献   

7.
The stability of spontaneous thin layers and thin layers formed upon cathodical polarization of Ti in KOH solutions have been studied by potentiostatic and ellipsometric methods. At open circuit potential (OCP) the strongly adherent films, whose thickness depends on the concentration of the KOH solution, were formed. During the cathodic polarization the transformation of these films to weakly adsorbed precipitated layers on the electrode surface was observed. Comparing the theoretically computed curves with the experimental Ψ vs Δ loci measured ellipsometrically, the complex indices of refraction and the thickness of the generated films, from 3.6 to 60 nm in 1 M KOH and from 36 to 105 nm in 5 M KOH (adherent to the electrode surface), were determined. At OCP the rate of film growth increases with increasing the concentration of KOH solution. Cathodic polarizations change the chemical composition and retard the rate of film growth. Based on the ellipsometric and electrochemical data the chemical compositions of the formed films consisted of TiO2, Ti2O3, TiO2·H2O, Ti(OH)3 and TiOOH·nH2O.  相似文献   

8.
It was found that the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes were affected by various post-calcination treatments, for example, calcination in NH3 or under vacuum. Post-calcination treatment in NH3 at 773 K was particularly effective in increasing the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes. A unique photoelectrochemical circuit was constructed by connecting a rod-type TiO2 electrode to a Pt electrode through a silicon solar cell in which the negative bias was applied on the rod-type TiO2 electrode. It was found that the photoelectrochemical circuit can effectively oxidize ethanethiol in water into CO2.  相似文献   

9.
Titanium oxide nanotube electrodes were successfully prepared by anodic oxidation on pure Ti sheets in 0.5 wt.% NH4F + 1 wt.% (NH4)2SO4 + 90 wt.% glycerol mixed solutions. Nanotubes with diameter 40–60 nm and length 7.4 μm were observed by field emission scanning electron microscope. The electrochemical and photoelectrochemical characteristics of TiO2 nanotube electrode were investigated using linear polarization and electrochemical impedance spectroscopy techniques. The open-circuit potential dropped markedly under irradiation and with the increase of Cl concentrations. A saturated photocurrent of approximately 1.3 mA cm−2 was observed under 10-W low-mercury lamp irradiation in 0.1 M NaCl solution, which was much higher than film electrode. Meanwhile, the highest photocurrent in NaCl solution implied that the photogenerated holes preferred to combine with Cl. Thus, a significant synergetic effect on active chlorine production was observed in photoelectrocatalytic processes. Furthermore, the generation efficiency for active chlorine was about two times that using TiO2/Ti film electrode by sol–gel method. Finally, the effects of initial pH and Cl concentration were also discussed.  相似文献   

10.
A commercially available TiO2 powder (Degussa P25) has been used to prepare thin films on graphite plates. The photoelectrochemical degradation of rhodamine B was investigated using this photoelectrode. The effects of applied potential, pH, and initial rhodamine B concentration on the photoelectrocatalytic (PEC) degradation of rhodamine B using ultraviolet illuminated TiO2/graphite (TiO2/C) thin film electrode were examined and discussed. Also, direct photolysis, electrochemical oxidation, photocatalytic, and PEC degradation of rhodamine B were compared. Results show that the best responses for PEC are obtained at applied potential of 1.2?V vs. reference electrode, pH?4.0, and initial rhodamine B concentration of 4.2?mg?L?1.  相似文献   

11.
《Electroanalysis》2018,30(8):1750-1756
Herein is described the development of a self‐powered sensor for gallic acid (GA) determination exploiting CdSe/ZnS quantum dot sensitized TiO2 nanoparticles (CdSe/ZnS/TiO2/FTO) as photoanode and an all copper oxide photocathode (CuO/Cu2O/FTO) to reduce water. A two‐chamber self‐powered photoelectrochemical cell was employed in order to maintain separated the photoelectrodes. The self‐powered photoelectrochemical cell is based on water reduction in the cathodic chamber while gallic acid acts as a hole scavenger in the anodic chamber to generate the necessary cell output to drive GA oxidation in the anodic compartment. Electrochemical impedance measurements were performed to evaluate the electronic characteristics of CdSe/ZnS/TiO2/FTO photoanode and CuO/Cu2O/FTO photocathode in terms of flat band potential, carrier density, and nature of semiconductor. Under optimized conditions, the self‐powered photoelectrochemical cell presented a wide linear response range for GA from 1 μmol L−1 up to 200 μmol L−1.  相似文献   

12.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   

13.
A simple photoelectrochemical method was proposed to quantitatively evaluate the electron transport process of photoelectrocatalytic oxidation of water at vertically aligned nanotubular TiO2 photoanodes. The photoelectrocatalysis reaction resistance (R=k/Jsph+R0=RI+R0) was measured and used to express the electron transport characteristics of a nanotubular TiO2 electrode. The overall resistance was found to consist of a variant (RI) and an invariant component (R0). RI was found to be inversely proportional to the saturation photocurrent and it depends on the experimental conditions. The proportional constant, k, represents the minimum applied potential bias required to remove 100 % of the photogenerated electrons from the photocatalyst layer and was found to be independent of the anodization time. The invariant component of the resistance (R0) is an inherent property of the semiconductor photocatalyst that represents the sum of Ohmic contact impedance at the conducting substrate/TiO2 interface and crystalline boundary impedance. The magnitude of R0 linearly increased with anodization time. The real saturated photocurrent density (Jreal‐sphd) was found to be independent of R0 indicating that the electron collection efficiency is independent of the nanotube length.  相似文献   

14.
A nano-Au modified TiO2 electrode was prepared via the oxidation of Ti sheet in flame and subsequent modification with gold nanoparticles. The results of SEM and TEM measurements show that the Au nanoparticles are well dispersed on TiO2 surface. A near 2-fold enhancement in photocurrent was achieved upon the modification with Au nanoparticles. From the results of photocurrent and electrochemical impedance experiments it was found that the flatband potential of nano-Au/TiO2 electrode negatively shifted about 100 mV in 0.5 mol/L Na2SO4 solutions compared with that of bare TiO2 electrode. The improvement of photoelectrochemical performance was explained by the inhibition for charge recombination of photo-induced electrons and holes, and the promotion for interracial charge-transfer kinetics at nano-Au/TiO2 composite film. Such nanometal-semiconductor composite films have the potential application in improving the performance of photoelectrochemical solar cells.  相似文献   

15.
The widely utilization of phenol and its derivatives such as 3-nitrophenol (3-NP) has led to the worldwide pollution in the environment. In this study, Ti/TiO2 photoelectrode was prepared with anodic oxidation of Ti foil electrode and then the photoelectrocatalytic (PEC) degradation of 3-NP was performed via this electrode, comparing with photocatalytic (PC), electrooxidation and direct photolysis by ultraviolet light. A significant photoelectrochemical synergetic effect in 3-NP degradation was observed on the Ti/TiO2 electrode and rate constant for the PEC process of Ti/TiO2 electrode was about three times as high as its PC degradation process. 3-NP concentration monitoring was carried out with differential pulse voltammetry. Results showed that PEC degradation has highest effect on concentration decreasing of 3-NP at solution and degraded it about 38 %, while other processes degradation efficiencies were about 4, 7, and 12 % for electrooxidation, direct photolysis and photocatalytic degradation, respectively. Finally, effects of solution pH and applied potential on degradation efficiency were studied and results showed that optimum pH for degradation is equal 4.00 and optimum potential is 1.2 V vs. Ag|AgCl|KCl (3M) reference electrode.  相似文献   

16.
《Colloids and Surfaces》1993,69(4):217-228
The open circuit potential (OCP) vs pH response of Ti/TiO2 electrodes prepared by thermal and electrochemical oxidation of metallic titanium was measured in KNO3 aqueous solutions in order to establish whether the slopes of the OCP-pH curves can be used as a measure of the variation of surface potential (ψo) of TiO2 with the pH of the aqueous solution. For comparison purposes, ψo—pH slopes were also evaluated from surface charge-pH data obtained by acid-base potentiometric titrations of TiO2 dispersions.Ti/TiO2 electrodes showed a linear OCP-pH response in the range of ph 5–10 with slopes of −0.039 ± 0.005 V ph−1. The OCP-pH dependence of Ti/TiO2 electrodes was lower than that predicted thermodynamically. According to the triple-layer model, used to describe the oxide/aqueous solution interface, the OCP-pH slopes obtained for Ti/TiO2 electrodes cannot be identified with the variation of ψo with the pH. Calculations with this model indicated that neither the single nor the double extrapolation methods used to evaluate the intrinsic ionization constant of oxide surface sites render realistic values of these parameters for the TiO2 surface.The analysis of surface charge—pH data and the use of the triple-layer model to predict experimental values indicated that the ψo—pH slopes of TiO2 surfaces must be greater (in absolute magnitude) than 0.041 V pH−1.  相似文献   

17.
Effect of oxygen pressure on the photoelectrochemical oxidation of C.I. Direct Black 22 azo dye on Ti/TiO2/RuO2 and Ti/TiO2 electrodes was studied. The degree of solution decoloration in its treatment by various methods: electrochemical, photocatalytic, and photoelectrochemical, was estimated.  相似文献   

18.
The adsorption of iodine and iodide anions on a Pt/Pt electrode (0.5 M H2SO4 as a supporting solution) is compared using potentiodynamic and galvanostatic charging curves, transients of the current and open-circuit potential (OCP), and analytical measurements. Variations in the charge and OCP during the adsorption obey relationships derived for strong adsorption of neutral species and ions on a hydrogen electrode with the formation of irreversibly adsorbed atoms. The main product of the I2 and I chemisorption in acid solutions is adsorbed iodine atoms. However, adsorption of iodine occurs in noticeable amounts and above a monolayer in the form of species that undergo electrodesorption during a cathodic polarization to potentials of the beginning of hydrogen adsorption. In the presence of a monolayer of adsorbed iodine atoms, potential of the zero total charge of a Pt/Pt electrode is in the oxygen adsorption region.  相似文献   

19.
This work spotlights the recently discovered photoelectrocatalytic properties of iron-based metal–organic frameworks (MOFs) for water oxidation reaction (WOR) under visible light irradiation. The low efficiency of WOR is one of the biggest difficulties faced by photoelectrochemical solar energy conversion; the development of new photoanodes for WOR is greatly desired. In view of the fact that a higher efficiency for WOR was forecast thanks to the peculiar properties of MOFs, such as a highly ordered framework and homogenous porous structure, the photoelectrodes based on MIL-101(Fe) containing photo-active iron(III) clusters have been fabricated by using a drop-casting method and applied to photoelectrochemical water oxidation as photoanodes. XRD measurements revealed the successful formation of MIL-101(Fe) electrodes while retaining their framework structures. From the results of photoelectrochemical measurements, the optimal thickness of the MIL-101(Fe) electrodes was determined to be ca. 60 μm, and the optimized MIL-101(Fe) electrode was found to promote photoelectrochemical WOR under visible light irradiation more efficiently than conventional α-Fe2O3 electrodes. Moreover, electrochemical impedance spectroscopy measurements demonstrated a lower resistance of charge transfer at the interface between the MOF surface and the electrolyte, resulting in better photoelectrochemical performance of the MIL-101(Fe) electrode.  相似文献   

20.
Intercalation of lithium from an LiClO4 propylene carbonate solution into thin-film TiO2 (rutile) electrodes produced by thermal oxidation of a titanium substrate are studied using cyclic voltammetry and impedance measurements at 0.01 to 105 Hz. An equivalent circuit adequately modeling the impedance spectra of TiO2- and Li x TiO2 electrodes throughout the frequency range studied is proposed. The electrochemical characteristics of film electrodes, the reversibility of intercalation-deintercalation process, the effect of surface passivation on the lithium transfer rate, and the dependence of electric, kinetic, and diffusion parameters on the electrode potential (composition) are discussed. The diffusion coefficient of lithium in Li x TiO2 is 10–12 cm2/s, as estimated by the impedance method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号