首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pyrolysis of three sugarcane residues (internal bagasse, external and whole plant) has been carried out in a pilot bubbling fluidized bed pyrolyzer operating under a range of temperature from 300 °C to 600 °C and two vapor residence time (2 and 5 s), with the aim of determining their pyrolysis behavior including products yields and heat balance. The composition of the product gases was determined, from which their heating value was calculated. The liquid bio-oil was recovered with cyclonic condensers and separated into two phases, an aqueous phase and an organic phase. The energy content of the organic phase was determined in comparison with common fossil fuels. Activated carbon adsorption and distillation at 110 °C were used to treat the aqueous phase, with the aim of recovering valuable hydrocarbons and purifying the aqueous phase for wastewater disposal. Furthermore, the thermal sustainability of the pyrolysis process was estimated by considering the energy contribution of the product gases and of the liquid bio-oil in relation to the pyrolysis heat requirements. The optimum pyrolysis temperatures were identified in terms of maximizing the liquid yield, maximizing the energy from the product bio-oil, and maximizing the net energy from the product bio-oil after ensuring a self-sustainable process by utilizing the product gases and part of bio-oil as heat sources.  相似文献   

2.
The pyrolysis of two grape residues (grape skins and the mixture of grape skins and seeds) has been carried out in a pilot bubbling fluidized bed pyrolyzer operating under a range of temperature from 300 to 600 °C and three vapor residence time (2.5, 5, and 20 s), with the aim of determining their pyrolysis behavior including products yields and heat requirements. The composition of the product gases was determined, from which their heating value was calculated. The liquid bio-oil was recovered with cyclonic condensers and separated into two phases, an aqueous phase and an organic phase. The chemical composition of these liquid phases was characterized. In addition, the environmental parameters of the distilled fraction (85–115 °C) of the aqueous phase were tested, while the heating value of the organic phase was determined. Furthermore, the thermal sustainability of the pyrolysis process was estimated by considering the energy contribution of the product gases and of the liquid bio-oil in relation to the pyrolysis heat requirements. The optimum pyrolysis temperatures were identified in terms of maximizing the liquid yield, maximizing the energy from the product bio-oil, and maximizing the net energy from the product bio-oil after ensuring a self-sustainable process by utilizing the product gases and bio-oil as heat sources.  相似文献   

3.
The main objective of this study was to evaluate the feasibility of pistachio shell as a biomass feedstock for the production of fungicidal oil and a precursor for the production of activated carbon by physical activation. For this purpose, pistachio shell was pyrolyzed in a fixed bed reactor at the different temperatures (300-600 °C). The pyrolysis products were identified as gas, bio-oil, aqueous solution and char. The product distribution from pyrolysis process did not significantly change when the pyrolysis temperature was above 300 °C. The pyrolysis gas product had low calorific value since it contained the high proportion of carbon oxides. Because of their high oxygen content, the bio-oils were found not to be used as a fuel. Thus, the bio-oil was tested again four different types of fungi (pathogenetic, wood decaying and saprophyting). It was shown fungicidal activity again all tested fungi at the concentration of 10-50 mg ml−1. The pyrolysis char was evaluated as a precursor for the production of activated carbon. The surface area and micropore volume of the activated carbon produced from the char by CO2 activation at 900 °C were found to be 708 m2 g−1 and 0.280 cm3 g−1, respectively.  相似文献   

4.
This research explores the opportunities of combining energy production with a biochar soil management using a pyrolysis process. Real-world issues justify this approach: the need to provide sustainable production systems that minimize on- and off-site pollution and soil degradation; and the demand for solutions to global warming. The proposed technology is a pyrolysis process that yields gas, bio-oil and biochar. The composition and heating value of the gas makes it suitable for use as a fuel. The bio-oil obtained may be evaluated as an environmentally friendly green biofuel candidate. The biochar product is carbon-rich and a potential solid biofuel. Other ways it might be used as a C and N source in soil amendment. This is a key to securing environmental benefits: the production of a biochar which can be applied to soil.  相似文献   

5.
Camellia oleifera shell is used as the feedstock to prepare the valuable products by pyrolysis using microwave heating at 400-800 °C. The yield of pyrolysis product is influenced by pyrolysis temperature, which indicates that high pyrolysis temperature promotes to generate bio-gas and restrains the production of biochar. However, pyrolysis temperature little influences the yield of bio-oil. The main compound of bio-oil is phenols, hydrocarbons, ketones, aldehydes and furans, respectively. While, bio-oil produced at 600 °C has as high as 78 % of phenols, which has potential application in chemical industries. The pyrolysis temperature has significantly influenced the composition and heating value of bio-gas. The maximum heating value of bio-gas is 12.44 MJ/Nm3, which is achieved at 600 °C. The physiochemical properties of biochar are also influenced by pyrolysis temperature. Biochar could be used as an adsorbent to adsorb Ag+ from aqueous solution, which is formed the value-added ABiochar composite by reduction. The adsorption and reduction process of Ag+ are investigated. While, ABiochar composite can be used as the catalyst for methylene blue degradation. ABiochar composite can be also used in the lithium ion battery cathode material for energy storage.  相似文献   

6.
《Comptes Rendus Chimie》2016,19(4):466-474
An optimized model is developed for the production of bio-fuels from biomass using a SuperPro Designer tool. Four types of Tunisian biomass feedstocks including date palm rachis, olive stones, vine stems and almond shells were selected for the fast pyrolysis process simulation. Simulation tests were performed at different temperatures ranging from 450 to 650 °C, and residence times ranging from 0.1 to 10 s and the products yield were determined. The obtained results indicate that a temperature of 575 °C and 0.25 s vapor residence time are the optimum parameters to maximize the bio-oil yield. Comparison between the different feedstocks indicates that a higher bio-oil fraction was obtained from the date palm rachis and vine stem. However, the difference between the samples is not significant and further investigations on the bio-oil properties are requested to select the suitable biomass for bio-oil production in Tunisia.  相似文献   

7.
Composite waste composed of carbon fibres and polybenzoxazines resin has been pyrolysed in a fixed bed reactor at temperatures of 350, 400, 450, 500 and 700 °C. Solid residues of between 70 and 83.6 wt%, liquid yields 14 and 24.6 wt% and gas yields 0.7 and 3.8 wt% were obtained depending on pyrolysis temperature. The derived pyrolysis liquids contained aniline in high concentration together with oxygenated and nitrogenated aromatic compounds. The pyrolysis gases consisted mainly of CO2, CO, CH4, H2 and other hydrocarbons. The carbon fibres used in the composite waste were separated from the char of the solid residue via oxidation of the char at two different temperatures and investigated for their mechanical strength properties. The carbon fibres recovered from the sample pyrolysed at 500 °C and oxidised at 500 °C exhibited mechanical properties which were 90% of that of the original virgin carbon fibres. Steam activation of the recovered carbon fibres was carried out at 850 °C at different times of activation. The effect of activation time on BET surface area, activated carbon fibres yield, porosity and the morphological structure of activated carbon fibres was evaluated. A maximum BET surface area of over 800 m2 g−1 was obtained for the activated carbon fibres produced at 850 °C for 5 h of activation. Nitrogen adsorption-desorption isotherms showed that the adsorption capacity increased as the activation time increased up to 5 h of activation and then after that decreased.  相似文献   

8.
Fast pyrolysis of yellow poplar wood (Liriodendron tulipifera) was performed under different temperature ranges and residence times in a fluidized bed reactor to maximize the yield of biooil. In this study, the pyrolysis temperature ranged from 400 °C to 550 °C, and the residence time of pyrolysis products was controlled between 1.2 and 7.7 s by inert nitrogen gas flow. The results revealed that the distribution of thermal degradation products (biooil, biochar, and gas) from the woody biomass was heavily influenced by pyrolysis temperature, as well as residence time. The highest yield of biooil was approximately 68.5 wt% (wet basis), with pyrolysis conditions of 500 °C and 1.9 s of residence time. Water content of the biooils produced at different temperatures was 25-30 wt%, and their higher heating values were estimated to be between 15 MJ/kg and 17 MJ/kg. Using GC/MS analysis, 30 chemical components were identified from the biooil, which were classified into 5 main groups: organic acids, aldehydes, ketones, alcohols, and phenols. In addition, biochar was produced as a co-product of fast pyrolysis of woody biomass, approximately 10 wt%, at temperatures between 450 °C and 550 °C. The physicochemical features of the biochar, including elemental analysis, higher heating values, and morphological properties by SEM, were also determined.  相似文献   

9.
Fast pyrolysis of biomass materials impregnated with ZnCl2 offered a promising way to obtain a liquid product rich in furfural (FF) and acetic acid (AA), and the pyrolytic solids could be used as the precursors to prepare activated carbons (ACs). In this study, a lab-scale fast pyrolysis set was designed and used for the quantitative production of the three chemicals. The maximum FF was produced from the corncob impregnated with at least 15 wt% ZnCl2 and at the pyrolysis temperature around 340 °C, with the yield of more than 8 wt% compared with only 0.49 wt% from the raw corncob. Meanwhile, AA of around 4 wt% could be obtained. The content of the FF and AA was over 50 wt% and 25 wt% on the water-free basis of the pyrolytic liquids. In addition, ACs were prepared from the pyrolytic solids, and they exhibited similar properties as those prepared from direct activation of ZnCl2-impregnated biomass materials.  相似文献   

10.
This research encompasses the use of noxious weed Parthenium hysterophorus as feedstock for pyrolysis carried out at varying temperatures of 300, 450 and 600°C. Temperature significantly affected the yield and properties of the pyrolysis products including char, syngas and bio-oil. Biochar yield decreased from 61% to 37% from 300 °C to 600 °C, whereas yield of gas and oil increased with increasing temperature. The pyrolysis products were physico-chemically characterized. In biochar, pH, conductivity, fixed carbon, ash content, bulk density and specific surface area of the biochar increased whereas cation exchange capacity, calorific value, volatile matter, hydrogen, nitrogen and oxygen content decreased with increasing temperature. Thermogravimetric analysis showed that the biochar prepared at higher temperature was more stable. Gas Chromatography-Mass Spectrometry analysis of biochar indicated the presence of alkanes, alkenes, nitriles, fatty acids, esters, amides and aromatic compounds. Number of compounds decreased with increasing temperature, but aromatic compounds increased with increasing temperature. Scanning electron micrographs of biochar prepared at different temperatures indicated micropore formation at lower temperature while increase in the size of pores and disorganization of vessels occurred at increasing temperature. The chemical composition was found to be richer at lower pyrolysis temperature. GC–MS analysis of the bio-oil indicated the presence of phenols, ketones, acids, alkanes, alkenes, nitrogenated compounds, heterocyclics and benzene derivatives.  相似文献   

11.
以大豆油为原料,在ZnCl2-KCl熔融盐体系中考察了进料速量、载气流量、反应温度及进料量对其热裂解的影响。采用气相色谱-质谱联用仪(GC-MS)表征生物油组成。结果表明,进料速量和载气流量主要通过改变大豆油的反应停留时间影响裂解效果。当进料速率为1.2 g/min及不通载气时,大豆油停留时间较长,裂解较充分;随着温度升高,生物油得率增大,含氧化合物含量及酸值上升;随着进料量增大,生物油得率稳定在70%左右,但脱羧效果有所下降。经过催化加氢,生物油性质得到了明显的改善,组分分布与0#柴油分布大体相似。  相似文献   

12.
In this study, spent bleaching clay containing 26.6 wt.% of residual palm oil was pyrolyzed using a tubular furnace. Carboxylic acids ranging from C9-C18 and alkanes ranging from C16-C44 were the major classes of compounds found in the pyrolytic products analyzed using GC-MS. Significant amounts of monoaromatic compounds, alkenes, alcohols, ketones, aldehydes, esters, nitrogenated compounds, and polycyclic aromatic hydrocarbons (PAHs) were found in the bio-oil produced in this study. The bio-oil resulting from the pyrolysis process gave n-hexadecanoic acid as the major compound. Decomposition temperature of the adsorbed oil determined using TGA was found to be in the range of 573-683 K. Topographical and elemental analyses of the clay was done using SEM-EDX. The functional groups were determined using FTIR.  相似文献   

13.
In this paper, the formation mechanism of pyrolysis gases released during the pyrolysis of pectin under the conditions that simulate cigarette smouldering was investigated by thermogravimetric analysis coupled to Fourier transform infrared spectrometer (TG-FTIR). Moreover, the combustion behavior of pyrolysis gases was studied by micro-scale combustion calorimetry (MCC). TG-FTIR results illustrated that the composition of the gaseous products was mainly composed of CO2, H2O, CO, methanol, methane and carbonyl compounds. MCC results demonstrated that the combustion of pectin was mainly determined by the prolysis gases formed in the temperature range of 200-300 °C. Flash pyrolysis experiment in combination with high performance liquid chromatography (FPy-HPLC) was used to study the pyrolytic formation of eight carbonyl compounds (i.e. formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone and butyraldehyde) during the pyrolysis of pectin under the pyrolysis conditions of cigarette puffing. Results demonstrated that pyrolysis temperature influenced the formation of acetaldehyde, acrolein, propionaldehyde and butyraldehyde greatly, while nitrogen flow affected the generation of formaldehyde, acetone, crotonaldehyde and methyl ethyl ketone deeply.  相似文献   

14.
The production of bio-oil via the slow pyrolysis of dissolved air flotation (DAF) skimmings from poultry processing is described. The raw DAF skimmings were characterized for physicochemical properties and for thermal behavior (TGA). The bio-oil was produced in a batch pyrolysis system at varying temperatures between 400 and 700 °C to study the effect of temperature on product yield. The fatty acids in the bio-oil produced displayed a high degree of saturation that caused the bio-oil to have poor cold flow properties (high cloud point and viscosity) so a solvent extraction scheme was devised to extract a bio-oil fraction rich in unsaturated fatty acids that could be further esterified into a bio-diesel and fatty nitriles that could be further processed into surfactants. This ethyl acetate-soluble fraction demonstrated much improved cold flow properties as well as lower water content and a higher HHV. The esterification of this soluble fraction was performed using methanol and sulfuric acid as an acid catalyst and the formation of fatty acid methyl esters was verified using GC/MS and FT-IR.  相似文献   

15.
Meat and bone meal (MBM) is a mass-produced by-product of the meat rendering industry. It has great potential as a feedstock for the production of bio-fuels. Meat and bone meal, however, is a highly cohesive and temperature sensitive material and has traditionally been found to be very difficult, if not impossible, to feed properly into pyrolysis reactors or bubbling fluidized beds. This study showcases an application of the ICFAR intermittent solid slug feeder technology and its capability of successfully feeding the MBM regularly at an average feeding rate of 0.34 g/s into the reactor.A highly automated and instrumented fast pyrolysis pilot plant has been used to process meat and bone meal residues and to operate within a wide range of temperatures (450–600 °C). This is the first study dealing with the pyrolysis of pure meat and bone meal at various operating conditions continuously fed into a laboratory-scale fluidized bed reactor. All liquid and solid products have been analyzed (yields, HHV, GC–MS, elemental analysis, and ash mineral analysis). The homogenous bio-oil produced is an attractive fuel with a significant high heating value (HHV) of 31.5 MJ/kg and an average liquid yield of 43 wt% at 550 °C. The highest water-free HHV (36.7 MJ/kg) was found at 500 °C, with a liquid yield of 35 wt% at this temperature. The optimized pyrolysis temperature, at which the heat from the gas combustion can provide the heat required for processing MBM, while maximizing the bio-oil liquid yield and process energy yield, is 550 °C. Under these conditions, the pyrolysis process energy yield is 91%.The study also demonstrates a new technique to accurately determine the heat of pyrolysis reaction energy required by the process, using a non-invasive water calibration method.  相似文献   

16.
Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50–82% in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and without catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.  相似文献   

17.
Nowadays, meat and bone meal produced in animal slaughterhouses and farms has become an important waste. Landfilling this residue means that its energy is lost. The pyrolysis of meat and bone meal produces a solid fraction which can be used as a fuel or as solid adsorbent, a liquid fraction with possible chemical applications and a low heating value gas.In this work, meat and bone meal has been pyrolyzed with a new technology, a mechanically fluidized reactor (MFR). This MFR is a stainless steel cylinder with 7.7 cm i.d., and an internal height of 15.6 cm. The meat and bone meal pyrolysis was carried out at 500 °C of temperature. The effect of several factors (mixer speed, heating rate and feed composition) on the product yields, bio-oil phases yield, bio-oil heating value and char heating value was studied. The amount of pure meat meal in the feed had a strong impact on product yields and compositions. The liquid yield, which has two phases, varies from 22 wt% to 52 wt% when the raw material fed changed from pure bone meal to pure meat meal.  相似文献   

18.
纤维素快速热裂解机理试验研究 Ⅰ. 试验研究   总被引:7,自引:7,他引:7  
在热辐射反应器上对纤维素快速热裂解过程中主要一次产物的生成规律进行了研究。结合焦油的GC-MS分析,发现左旋葡聚糖(LG)作为最重要的液体产物,占据了焦油质量的45w%~85w%。LG的生成主要集中在550 ℃~650 ℃中温辐射源区域,其产量随温度的变化存在一最佳值,约在640 ℃左右得到54.4w%的最高产率。乙醇醛(HAA)作为焦油的第二重要组分,在焦油中达到了6w%~14w%的比例,与之含量接近的还有1-羟基-2-丙酮(Acetol),约为3.5w%~8w%。它们的产率在相当大的范围内随温度的升高而增加,表明高温有利于它们的生成。同时分析表明乙醇醛、1-羟基-2-丙酮是在与LG的竞争过程中作为纤维素热裂解一次产物直接生成的。  相似文献   

19.
Three different products were obtained from the pyrolysis of dry peel sweet orange: bio-oil, char and non-condensable gases. The yield of each product was determined. The bio-oil was characterized by GC–MS to determine that can be used as a renewable source of valuable industrial chemicals or as a source of energy, high heating value was calculated by Channiwala and Parikh correlation based on Dulong's Formula.Thermogravimetric analysis at 1, 5, 10, 20, and 40 °C/min, shows three different overlapped steps resulting in an average mass loss of ∼80% within the temperature range of 114–569 °C. The bench scale pyrolysis experiments, produces average yields of 53.1, 21.1 and 25.8 wt.% for bio-oil, char and gases, respectively. Bio-oil characterization by GC–MS and FTIR identified limonene as its main component while other identified compounds included δ-limonene, alcohols, phenols, benzene, toluene, xylene and carboxylic acids.  相似文献   

20.
Fossil fuels such as petroleum, charcoal, and natural gas sources are the main energy sources at present, but considering their natural limitation in availability and the fact that they are not renewable, there exists a growing need of developing bio-fuel production. Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy, especially for the transportation sector. JackfruitwasteisabundantinIndonesiamake itpotentiallyas one of thegreenrefineryfeedstockforthe manufacture ofbio-fuel.As intermediate of bio-fuel,jackfruitpeelsisprocessed intobio-oil. Pyrolysis, a thermochemical conversion process under oxygen-absent condition is an attractive way to convert biomass into bio- oil.In this study, the pyrolysis experiments were carried out ina fixed-bedreactor at a range of temperature of400-600 °C, heating rate range between 10-50 °C/min, and a range of nitrogen flow between 2-4litre/min. The aims of this work were to explore the effects of pyrolysis conditions and to identify the optimum condition for obtaining the highest bio-oil yield.The effect of nitrogen flow rate and heating rate on the yield of bio-oil were insignificant. The most important parameter in the bio-oil production was the temperature of the pyrolysis process.The yield of bio-oil initially increased with temperature (up to 550 °C) then further increase of temperature resulting in the decreased of bio-oil yield. Results showed that the highest bio-oil yield (52.6%)wasobtainedat 550 °C with nitrogen flow rate of 4L/min and heating rate of 50 °C/min. The thermal degradation of jackfruit peel was also studied using thermogravimetric analysis (TGA). Gas chromatography (GC-MS) was used to identify the organic fraction of bio-oil. The water content in the bio-oil product was determined by volumetric Karl-Fischer titration. The physicochemical properties of bio-oil produced from pyrolysis of jackfruit peels such as gross calorific value, pH, kinematic viscosity, density, sulfur content, ash content, pour point and flash point were determined and compared to ASTM standard of bio-oil (ASTM 7544).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号