首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.  相似文献   

2.
Based on nonlinear wave mixing, we experimentally propose a scheme for directly generating optical orbital angular momentum(OAM) by a spirally structured fundamental wave interacting with a nonlinear medium, in which the nonlinear susceptibilities are homogenous. In the experiment, the second-harmonic generation of a fundamental wave carrying positive(negative) integers and fractional OAM states was investigated. This study presents a convenient approach for dynamic control of OAM of vortex beams, which may feature their applications in optical manipulation and optical communication.  相似文献   

3.
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in crosstalk between OAM modes. We study this crosstalk in OAM for 11 modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.  相似文献   

4.
部分相干光的轨道角动量及其谱的分析研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对光束轨道角动量的研究主要集中在相干光束的研究,而对于部分空间相干光束的轨道角动量研究较少,依据部分相干光的Wigner分布函数推导出部分相干光的轨道角动量表达式,分析了部分相干光的轨道角动量谱特性。采用Mercer展开法得到了轨道角动量谱,计算了给定部分相干光束的轨道角动量谱,讨论了部分相干性对轨道角动量谱的影响。研究结果表明:部分相干光和相干光具有相同的轨道角动量表达式,部分相干光的轨道角动量谱随着相干性的变差而愈发弥散,携带轨道角动量的部分相干光束的轨道角动量谱比不携带轨道角动量的部分相干光束的轨道角动量谱更容易受相干度的影响。  相似文献   

5.
传统的沿z轴光纤传输光线的轨道角动量(orbital angular momentum,OAM)光束的制备方法共同之处都是从内部结构着想,光束的主光线基本上不变,只是波面在变.但要获得携带高mh的光有一定的难度.针对上述问题,本文建立以波面不变,光束主光线变化为基础的理论框架,利用微分几何理论验证不沿z轴圆柱型光纤螺线圈传输的光线可以携带高mh OAM的理论设想.研究发现:利用流动坐标(α,β,γ)计算光线在绕圆柱体的光纤中传输时光纤截面的衍射分布图呈现涡旋特征,有高阶OAM模式.当θ=θ0时,圆柱形轨道光纤过渡到直线轨道光纤.计算光线沿直线传输时光纤截面的衍射分布图是Airy斑,即圆孔衍射斑,无高阶OAM模式.  相似文献   

6.
邹丽  王乐  赵生妹  陈汉武 《中国物理 B》2016,25(11):114215-114215
Atmospheric turbulence(AT) induced crosstalk can significantly impair the performance of a free-space optical(FSO)communication link using orbital angular momentum(OAM) multiplexing.In this paper,we propose a multiple-user detection(MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link.First,we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT.In the equivalent model,each input bit stream represents one user's information.The deformed OAM spatial modes caused by AT,instead of the pure OAM spatial modes,are used as information carriers,and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users.Then,we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link.In the proposed scheme,the crosstalk caused by AT is used as a useful component to deduce users' information.The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme.When the turbulence strength C_n~2 is 1 × 10~(-15) m~(-2/3),the transmission distance is 1000 m and the channel signal-to-noise ratio(SNR)is 26 dB,the bit-error-rate(BER) performance of four spatial multiplexed OAM modes l_m = + 1,+2,+3,+4 are all close to 10~(-5),and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme.In addition,the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval.The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.  相似文献   

7.
The entangled orbital angular momentum (OAM) photons propagating across a weakly turbulent atmosphere are investigated. Here, the paper uses the single-phase screen model based on the Kolmogorov theory of turbulence, and focuses on the influence of the backward scattering on OAM evolution. The results indicate that backward scattering plays an important role in the analysis of OAM entanglement evolution in the turbulent atmosphere. It cannot be negligible especially for higher-order OAM mode. Moreover, when OAM mode is greater than 4, entangled photon pairs composed of higher OAM modes are not more robust in turbulence within the weak scintillation regime. These results will be useful in future investigations of OAM-based optical wave propagation through turbulent atmosphere.  相似文献   

8.
Measuring the orbital angular momentum (OAM) of vortex beams, including the magnitude and the sign, has great application prospects due to its theoretically unbounded and orthogonal modes. Here, the sign-distinguishable OAM measurement in optomechanics is proposed, which is achieved by monitoring the shift of the transmission spectrum of the probe field in a double Laguerre–Gaussian (LG) rotational-cavity system. Compared with the traditional single LG rotational cavity, an asymmetric optomechanically induced transparency window can occur in our system. Meanwhile, the position of the resonance valley has a strong correlation with the magnitude and sign of OAM. This originally comes from the fact that the effective detuning of the cavity mode from the driving field can vary with the magnitude and sign of OAM, which causes the spectral shift to be directional for different signs of OAM. Our scheme solves the shortcoming of the inability to distinguish the sign of OAM in optomechanics, and works well for high-order vortex beams with topological charge value±45, which is a significant improvement for measuring OAM based on the cavity optomechanical system.  相似文献   

9.
The analytic formulae of probability distribution of spiral plane modes for the Whittaker-Gaussian(WG) beams with orbital angular momentum(OAM) in strong turbulence regime are modeled based on the modified Rytov approximation.Numerical results show that the crosstalk range of OAM modes in the vicinity of signal mode increases with the increasing refractive-index construction parameter.However,effects of change of the width of the Gaussian envelope and the parameter Wo of WG beams on normalization energy weight of signal mode can be ignored.We find theoretically that signal spiral plane mode of WG beams at each OAM level approximatively has the same normalization energy weight,inaplying that the channels with WG(pseudo non-diffraction) beam have higher channel capacity than the channels with the Laguerre-Gaussian beam.  相似文献   

10.
The use of a Hartmann wave-front sensor to accurately measure the line-integrated electron density gradients formed in laser-produced and z-pinch plasma experiments is examined. This wave-front sensor may be used with a soft-x-ray laser as well as with incoherent line emission at multikilovolt x-ray energies. This diagnostic is significantly easier to use than interferometery and moiré deflectometry, both of which have been demonstrated with soft-x-ray lasers. This scheme is experimentally demonstrated in the visible region by use of a Shack-Hartmann wave-front sensor and a liquid-crystal spatial light modulator to simulate a phase profile that could occur when an x-ray probe passes through a plasma. The merits of using a Hartmann sensor include a wide dynamic range, broadband or low-coherence-length light capability, high x-ray efficiency, two-dimensional gradient determination, multiplexing capability, and experimental simplicity. Hartmann sensors could also be utilized for wavelength testing of extreme-ultraviolet lithography components and x-ray phase imaging of biological specimens.  相似文献   

11.
Inspired by recent rapid deep learning development, we present a convolutional-neural-network(CNN)-based algorithm to predict orbital angular momentum(OAM) mode purity in optical fibers using far-field patterns.It is found that this image-processing-based technique has an excellent ability in predicting the OAM mode purity, potentially eliminating the need of using bulk optic devices to project light into different polarization states in traditional methods. The excellent performance of our algorithm can be characterized by a prediction accuracy of 99.8% and correlation coefficient of 0.99994. Furthermore, the robustness of this technique against different sizes of testing sets and different phases between different fiber modes is also verified. Hence, such a technique has a great potential in simplifying the measuring process of OAM purity.  相似文献   

12.
Wei Wang 《中国物理 B》2022,31(9):94302-094302
Acoustic orbital angular momentum (OAM) associated with helicoidal wavefront recently attracts rapidly-growing attentions, offering a new degree of freedom for acoustic manipulation. Due to the unique dynamical behavior and inherent mode orthogonality of acoustic OAM, its harnessing is of fundamental interests for wave physics, with great potential in a plethora of applications. The recent advance in materials physics further boosts efforts into controlling OAM-carrying acoustic vortices, especially acoustic metasurfaces with planar profile and subwavelength thickness. Thanks to their unconventional acoustic properties beyond attainable in the nature, acoustic artificial structures provide a powerful platform for new research paradigm for efficient generation and diverse manipulation of OAM in ways not possible before, enabling novel applications in diverse scenarios ranging from underwater communication to object manipulation. In this article, we present a comprehensive view of this emerging field by delineating the fundamental physics of OAM-metasurface interaction and recent advances in the generation, manipulation, and application of acoustic OAM based on artificial structures, followed by an outlook for promising future directions and potential practical applications.  相似文献   

13.
尹霄丽  郭翊麟  闫浩  崔小舟  常欢  田清华  吴国华  张琦  刘博  忻向军 《物理学报》2018,67(11):114201-114201
携带轨道角动量的汉克-贝塞尔(Hankel-Bessel,HB)光束具有无衍射和自聚焦特性,用来作为信息传输的载体有望增大信息传输容量.基于Rytov近似理论,推导得到了HB涡旋光束经过海洋水平弱湍流信道后的螺旋相位谱的解析表达式,并利用数值仿真方法研究了海洋湍流参数对轨道角动量模式探测概率的影响.结果表明,海洋湍流导致发射轨道角动量模式的探测概率下降,出现模式串扰和螺旋相位谱扩展.海洋湍流对HB涡旋光束的负面影响随着轨道角动量模式数、传输距离、温度方差耗散率的增加而增强,随湍流动能耗散率的增加而减弱.HB涡旋光束受以盐度波动驱动的海洋湍流的负面影响更大.另外,在弱湍流及几十米传输距离条件下,HB涡旋光束的传输性能要差于最佳束腰大小设置的拉盖尔-高斯涡旋光束.这些结果有望为海洋环境水下光通信链路的实现提供一定的参考价值.  相似文献   

14.
We propose an approach to efficiently generate and multiplex optical orbital angular momentum (OAM) modes in a fiber with a ring refractive index profile by using multiple coherent inputs from a Gaussian mode. By controlling the phase relationship of the multiple inputs, one can selectively generate OAM modes of different states l. By controlling both the amplitude and phase of the multiple inputs, multiple OAM modes can be generated simultaneously without additional loss coming from multiplexing. We show, by simulation, the generation of OAM modes (OAM state |l|<3) with mode purity greater than 99%. The power loss of generating and multiplexing seven modes is about 35%. A transmitter for an OAM-based mode-division multiplexing system is proposed based on the discrete Fourier transform between the data carried by the multiple inputs and the data carried by the OAM modes. The experimental implementation of the proposed approach could be achieved by integrating ring fiber, multicore fiber, and photonic integrated circuit technology.  相似文献   

15.
We investigate the stimulated Brillouin scattering(SBS)properties of light beams carrying orbit angular momentum(OAM).The phase conjugation of light beams carrying OAM is experimentally achieved in an SBS mirror with a random phase plate.The spectrum and the pulse width compression of SBS light are measured.It is shown that the phenomena of pulse compression is observed and OAM conservation is confirmed in the SBS process.The OAM transfer from photons to phonons may find potential applications in photon-phonon conversion-based signal-processing schemes by using OAM multiplexing.  相似文献   

16.
A systematic study of the aperture efficiency and mode constituent for orbital angular momentum(OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error,especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle.At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.  相似文献   

17.
为了研究大气湍流对高斯涡旋光束传递信息的影响,理论分析了经过大气湍流的高斯涡旋光束轨道角动量(OAM)模式的径向平均功率和归一化平均功率分布、固有模式指数、初始光束半径和湍流强度;采用纯相位扰动逼近的有效性,数值模拟高斯涡旋光束在传输中的OAM模式径向平均功率分布的变化。建立传输模型并进行外场激光大气传输实验,对比分析了模拟和实测的OAM归一化平均功率分布,结果表明在弱湍流条件下,OAM模式的径向平均功率随着接收器孔径尺寸的增加而变化,逐渐趋于稳定值。对于一般常用的接收孔径,在强湍流或较小的初始光束半径条件下对OAM模式干扰十分严重。验证了用数值方法模拟OAM在湍流介质中的模式变化过程的可靠性。  相似文献   

18.
We present an optical setup for generating a sequence of light pulses in which the orbital angular momentum (OAM) degree of freedom is correlated with the temporal one. The setup is based on a single q plate within a ring optical resonator. By this approach, we demonstrate the generation of a train of pulses carrying increasing values of OAM, or, alternatively, of a controlled temporal sequence of pulses having prescribed OAM superposition states. Finally, we exhibit an "OAM-to-time conversion" apparatus that divides different input OAM states into different time bins. The latter application provides a simple approach to digital spiral spectroscopy of pulsed light.  相似文献   

19.
崔粲  王智  李强  吴重庆  王健 《物理学报》2019,68(6):64211-064211
基于矢量模式耦合理论,在多模光纤中引入手性耦合纤芯结构,设计了一种光纤型光轨道角动量调制器.使用单根光纤,无需施加扭转或应力,可以实现任意光轨道角动量的调制.通过理论分析与数值仿真,研究了不同结构参数对轨道角动量模式纯度、传输损耗和有效折射率的影响.在中心纤芯和旁纤芯传播常数不变的前提下,旁纤芯数量对损耗影响较大,通过相位匹配条件计算得到的螺距可以在一定数值范围内浮动变化,两种纤芯的间距受限于模式损耗和光纤集成度.  相似文献   

20.
We predict the presence of strong dichroic effects induced by x-ray beams carrying orbital angular momentum (OAM). Taking the difference between spectra obtained with positive and negative OAM states allows the separation of quadrupolar from dipolar transitions at, e.g., the transition-metal K edges, enabling the study of the unoccupied states in the absence of strong core-hole effects. We study the dependence of OAM-induced x-ray dichroism on different polarization vectors and derive sum rules relating the integrated intensity to ground-state hole densities. Calculations of spectral line shapes for cuprates, manganites, and ruthenates confirm the strong OAM-induced dichroism and indicate the potential of this new spectroscopy in the fields of orbital physics and magnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号