首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oliver Cooley   《Discrete Mathematics》2009,309(21):6190-6228
The Loebl–Komlós–Sós conjecture states that for any integers k and n, if a graph G on n vertices has at least n/2 vertices of degree at least k, then G contains as subgraphs all trees on k+1 vertices. We prove this conjecture in the case when k is linear in n, and n is sufficiently large.  相似文献   

2.
A conjecture of Komlós states that for every graph H, there is a constant K such that if G is any n‐vertex graph of minimum degree at least (1 ? (1/χcr(H)))n, where χcr(H) denotes the critical chromatic number of H, then G contains an H‐matching that covers all but at most K vertices of G. In this paper we prove that the conjecture holds for all sufficiently large values of n. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 180–205, 2003  相似文献   

3.
Yao et al. (Discrete Appl Math 99 (2000), 245–249) proved that every strong tournament contains a vertex u such that every out‐arc of u is pancyclic and conjectured that every k‐strong tournament contains k such vertices. At present, it is known that this conjecture is true for k = 1, 2, 3 and not true for k?4. In this article, we obtain a sufficient and necessary condition for a 4‐strong tournament to contain exactly three out‐arc pancyclic vertices, which shows that a 4‐strong tournament contains at least four out‐arc pancyclic vertices except for a given class of tournaments. Furthermore, our proof yields a polynomial algorithm to decide if a 4‐strong tournament has exactly three out‐arc pancyclic vertices.  相似文献   

4.
For an integer ? at least 3, we prove that if G is a graph containing no two vertex‐disjoint circuits of length at least ?, then there is a set X of at most vertices that intersects all circuits of length at least ?. Our result improves the bound due to Birmelé, Bondy, and Reed (The Erd?s–Pósa property for long circuits, Combinatorica 27 (2007), 135–145) who conjecture that ? vertices always suffice.  相似文献   

5.
In this paper we study the structure of graphs with a unique k‐factor. Our results imply a conjecture of Hendry on the maximal number m (n,k) of edges in a graph G of order n with a unique k‐factor: For we prove and construct all corresponding extremal graphs. For we prove . For n = 2kl, l ∈ ℕ, this bound is sharp, and we prove that the corresponding extremal graph is unique up to isomorphism. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 227–243, 2000  相似文献   

6.
Enomoto 7 conjectured that if the minimum degree of a graph G of order n ≥ 4k ? 1 is at least the integer , then for any k vertices, G contains k vertex‐disjoint cycles each of which contains one of the k specified vertices. We confirm the conjecture for n ≥ ck2 where c is a constant. Furthermore, we show that under the same condition the cycles can be chosen so that each has length at most six. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 276–296, 2003  相似文献   

7.
The Erd?s‐Sós Conjecture is that a finite graph G with average degree greater than k ? 2 contains every tree with k vertices. Theorem 1 is a special case: every k‐vertex tree of diameter four can be embedded in G. A more technical result, Theorem 2, is obtained by extending the main ideas in the proof of Theorem 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 291–301, 2005  相似文献   

8.
Letf(n) denote the minimal number of edges of a 3-uniform hypergraphG=(V, E) onn vertices such that for every quadrupleYV there existsYeE. Turán conjectured thatf(3k)=k(k−1)(2k−1). We prove that if Turán’s conjecture is correct then there exist at least 2 k−2 non-isomorphic extremal hypergraphs on 3k vertices.  相似文献   

9.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

10.
We show that the four‐cycle has a k‐fold list coloring if the lists of colors available at the vertices satisfy the necessary Hall's condition, and if each list has length at least ?5k/3?; furthermore, the same is not true with shorter list lengths. In terms of h(k)(G), the k ‐fold Hall number of a graph G, this result is stated as h(k)(C4)=2k??k/3?. For longer cycles it is known that h(k)(Cn)=2k, for n odd, and 2k??k/(n?1)?≤h(k)(Cn)≤2k, for n even. Here we show the lower bound for n even, and conjecture that this is the right value (just as for C4). We prove that if G is the diamond (a four‐cycle with a diagonal), then h(k)(G)=2k. Combining these results with those published earlier we obtain a characterization of graphs G with h(k)(G)=k. As a tool in the proofs we obtain and apply an elementary generalization of the classical Hall–Rado–Halmos–Vaughan theorem on pairwise disjoint subset representatives with prescribed cardinalities. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 16–34, 2010.  相似文献   

11.
We show that every graph G on n vertices with minimal degree at least n/k contains a cycle of length at least [n/(k ? 1)]. This verifies a conjecture of Katchalski. When k = 2 our result reduces to the classical theorem of Dirac that asserts that if all degrees are at least 1/2n then G is Hamiltonian.  相似文献   

12.
The well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n ≤ 10 and n ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008  相似文献   

13.
A conjecture of Dirac states that every simple graph with n vertices and 3n ? 5 edges must contain a subdivision of K5. We prove that a topologically minimal counterexample is 5-connected, and that no minor-minimal counterexample contains K4e. Consequently, Dirac's conjecture holds for all graphs that can be embedded in a surface with Euler characteristic at least ? 2.  相似文献   

14.
Ng and Schultz [J Graph Theory 1 ( 6 ), 45–57] introduced the idea of cycle orderability. For a positive integer k, a graph G is k‐ordered if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a Hamiltonian cycle, then G is said to be k‐ordered Hamiltonian. We give sum of degree conditions for nonadjacent vertices and neighborhood union conditions that imply a graph is k‐ordered Hamiltonian. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 69–82, 2000  相似文献   

15.
An arc in a tournament T with n ≥ 3 vertices is called pancyclic, if it is in a cycle of length k for all 3 ≤ k ≤ n. Yeo (Journal of Graph Theory, 50 (2005), 212–219) proved that every 3-strong tournament contains two distinct vertices whose all out-arcs are pancyclic, and conjectured that each 2-strong tournament contains 3 such vertices. In this paper, we confirm Yeo’s conjecture for 3-strong tournaments. The author is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen University, Germany.  相似文献   

16.
We conjecture that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT‐edge‐connected graph such that |E(T)| divides |E(G)|, then the edges of G can be divided into parts, each of which is isomorphic to T. We prove that for T = K1,3 (the claw), this holds if and only if there exists a (smallest) natural number kt such that every kt‐edge‐connected graph has an orientation for which the indegree of each vertex equals its outdegree modulo 3. Tutte's 3‐flow conjecture says that kt = 4. We prove the weaker statement that every 4$\lceil$ log n$\rceil$ ‐edge‐connected graph with n vertices has an edge‐decomposition into claws provided its number of edges is divisible by 3. We also prove that every triangulation of a surface has an edge‐decomposition into claws. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 135–146, 2006  相似文献   

17.
A graph G is κ-ordered Hamiltonian 2≤κ≤n,if for every ordered sequence S of κ distinct vertices of G,there exists a Hamiltonian cycle that encounters S in the given order,In this article,we prove that if G is a graph on n vertices with degree sum of nonadjacent vertices at least n 3κ-9/2,then G is κ-ordered Hamiltonian for κ=3,4,…,[n/19].We also show that the degree sum bound can be reduced to n 2[κ/2]-2 if κ(G)≥3κ-1/2 or δ(G)≥5κ-4.Several known results are generalized.  相似文献   

18.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

19.
《Journal of Graph Theory》2018,89(3):304-326
A famous conjecture of Gyárfás and Sumner states for any tree T and integer k, if the chromatic number of a graph is large enough, either the graph contains a clique of size k or it contains T as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star S and integer k, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size k or it contains S as an induced subgraph. As an evidence, we prove that for any oriented star S, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order 3 or S as an induced subdigraph. We then study for which sets of orientations of P4 (the path on four vertices) similar statements hold. We establish some positive and negative results.  相似文献   

20.
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号