首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical oxidation of acetaminophen (ACOP) has been successfully performed by using glassy carbon electrode covered with 4-hydroxyquinoline-3-carboxylic acid (4HQ3CA) to reinforce electrode's feature. To characterize the modified electrode (4HQ3CA/GC), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Fourier transform infrared spectroscopy (FT-IR) techniques were used. The finding optimum conditions (supporting electrolyte, pH) and the electrochemical determination studies were performed with differential pulse voltammetry (DPV). It was decided that the supporting electrolyte medium suitable for ACOP determination was Britton-Robinson (BR) buffer and the effect of pH change on the oxidation peak of ACOP in this media was investigated. The effect of changing scan rate on the oxidation peak of ACOP was examined and this study showed that the oxidation process of ACOP on the 4HQ3CA/GC modified electrode surface was diffusion and adsorption controlled process. A wide concentration range from 0.0025 μM to 141 μM with a limit of detection (LOD) of 5.98×10−10 M (3 s/m) was obtained. This prepared sensor was carried out for the determination of ACOP in pharmaceutical sample.  相似文献   

2.
A multicomponent electrochemical sensor, with two nanometer-scale components in sensing matrix/electrode, was used to simultaneous determination of levodopa (LD) and tyramine (TR) in pharmaceutical and diet samples. Multiwall carbon nanotubes (MWCNTs) were used as carbonaceous materials in the electrode construction. 5-amino-3',4'-dimethoxy-biphenyl-2-ol (5ADMB) was used as electron mediator and Pt nanoparticles (nPt) as a catalyst. The 5ADMB catalyzes the oxidation of LD to the corresponding catecholamine, which is electrochemically reduced back to LD. Preparation of this electrode was very simple and modified electrode showed good properties at electrocatalytic oxidization of LD and TR. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and TR has been explored at the modified electrode. Differential pulse voltammetry peak currents of LD and TR increased linearly with their concentrations at the ranges of 0.50–100.0 μM and 0.60–100.0 μM, respectively. Also, the detection limits for LD and TR were 0.31 and 0.52 μM, respectively. The electrode exhibited an efficient catalytic response with good reproducibility and stability.  相似文献   

3.
For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 μM and 268.3-417.3 μM of hydrazine and for 4.0-33.8 μM and 33.8-78.3 μM of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 μM and 0.45 μM for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.  相似文献   

4.
Potential cycling was used for oxidation of chloropromazine and producing an electroactive redox couples which strongly adsorbed on the electrode surface modified with carbon nanotubes and ionic liquid nanocomposite. The modified electrode shows excellent electrocatalytic activity toward NADH oxidation. The differential pulse voltammetry detection provided high sensitivity, 0.5835 A M?1, low detection limit, 80 nM at concentration range up to 20 μM. An ethanol biosensor was also developed by immobilizing alcohol dehydrogenase enzyme onto nanocomposite. Differential pulse voltammetric detection of ethanol gives linear responses over the concentration range 40 μM–1.5 mM with detection limit 5 μM and sensitivity 1.97 μA mM?1.  相似文献   

5.
A Nafion-graphene (Nafion-GR) nanocomposite film modified glassy carbon electrode was fabricated by a simple drop-casting method, and used in the electrochemical detection of p-aminophenol (4-AP). Owing to the large surface area, good conductivity of GR and good affinity of Nafion, the sensor exhibited excellent electrocatalytic activity for the oxidation of 4-AP. The electrochemical behaviors of 4-AP on Nafion/GR film modified glassy carbon electrodes were investigated by cyclic voltammetry and differential pulse voltammetry. A calibration curve is constructed in the same matrix, urine, as the unknown samples to be analyzed. The Nafion-GR film modified electrode was linearly dependent on the 4-AP concentration and the linear analytical curve was obtained in the ranges of 0.5–200 μM with differential pulse voltammetry (DPV) and the detection limit was 0.051 μM. The Nafion-graphene nanocomposite modified electrode exhibited good reusability than pure graphene modified GCE. This procedure can be used for the determination of p-aminophenol in the presence of its degradation products and paracetamol. Finally, the proposed method was successfully used to determine p-aminophenol in local tap water samples in urine samples and pharmaceutical preparations.  相似文献   

6.
In this research a novel nickel complex was used as electrocatalyst for electrooxidation of glycine. A nano-structured nickel chelidamic acid was electrodeposited on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified electrode. The electrode possesses a three-dimensional (3D) porous network nanoarchitecture, in which the bimetallic Au-Pt NPs serving as metal nanoparticle based microelectrode ensembles are distributed in the matrix of interlaced 3,3′,5,5′-tetramethylbenzidine (TMB) organic nanofibers (NFs). Electrocatalytic oxidation of glycine on the surface of modified electrode was investigated with cyclic voltammetry method and the results showed that the nickel chelidamic acid films displayed excellent electrochemical catalytic activities towards glycine oxidation. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of glycine. Under optimized conditions the calibration plots are linear in the concentration range 1 μM-0.75 mM and detection limit was found to be 0.3 μM.  相似文献   

7.
Electrochemical oxidation of vanillin (VAN) in the presence of caffeine (CAF) was studied on a gold (Au) electrode modified with 3‐amino‐1,2,4‐triazole‐5‐thiol (ATT) film by using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) method. The formation of the ATT film on the Au electrode surface was characterized by the CV, fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy (EIS) methods. A single irreversible oxidation peak of the VAN was obtained by using the CV method. The determination of VAN in the presence of CAF was carried out at pH 4 in Britton Robinson buffer (BR) by the DPV method. Under the optimal conditions, the oxidation peak current was proportional to the concentration of VAN in the range of 1.1 μM to 76.4 μM in the presence of CAF with the correlation coefficient of 0.997 and the detection limit of 0.19 μM (S/N=3). The selective determination of VAN in a commercial coffee sample was carried out with satisfactory results on the ATT‐Au modified electrode.  相似文献   

8.
A stable electroactive thin film of poly(4,5-dihydroxy-1,3-benzenedisulfonic acid) was electrochemically deposited at the surface of multiwall carbon nanotubes-glassy carbon electrode. The electrocatalytic oxidation of hydrazine has been studied at the surface of the modified electrode using cyclic voltammetry, chronoamperometry and linear sweep voltammetry as diagnostic techniques. The modified electrode exhibits good electrocatalytic activity for the oxidation of hydrazine with a good sensitivity. Linear calibration range was in the wide concentration range of 10–3540 μM hydrazine with a detection limit of 1.8 μM and a sensitivity of 85.3 nA/μM. A Tafel plot, derived from voltammograms, indicated a one-electron transfer process to be the rate-limiting step and the overall number of electrons involved in the catalytic oxidation of hydrazine was found to be four. The influences of potentially interfering substances were studied. The diffusion coefficient of hydrazine was also evaluated. Finally, the proposed modified electrode was used for the determination of hydrazine in spiked water samples.  相似文献   

9.
A novel carbon paste electrode modified with ZnO nanorods and 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide (2PHCZNCPE) was fabricated and employed to study the electrocatalytic oxidation of droxidopa, using cyclic voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. It has been found that the oxidation of droxidopa at the surface of modified electrode occurs at a potential of about 435 mV less positive than that of an unmodified carbon paste electrode. Square wave voltammetry exhibits a linear dynamic range from 7.0 × 10–8 to 3.0×10?4 M and a detection limit of 45.0 nM for droxidopa. Finally this modified electrode was used for simultaneous determination of droxidopa and carbidopa.  相似文献   

10.
3-(4'-Amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid, was synthesized and used to construct a modified-graphene oxide nano sheets paste electrode. The electro-oxidation of isoproterenol at the surface of the modified electrode was studied using cyclic voltammetry, chronoamperometry, and square wave voltammetry. Under the optimized conditions, the square wave voltammetric peak currents of isoproterenol increased linearly with isoproterenol concentrations in the range of 2.5 × 10–8 to 2.0 × 10–5 M and detection limit of 12 nM was obtained for isoproterenol. Finally this modified electrode was used for determination of isoproterenol in some real samples.  相似文献   

11.
A carbon paste electrode was modified with ZnO nanorods and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,4′AAZCPE) to cause electrocatalysis of norepinephrine oxidation. It has been found that the oxidation of norepinephrine at the surface of modified electrode occurs at a potential of about 180 mV less positive than that of an unmodified carbon paste electrode. Square wave voltammetry (SWV) exhibits linear dynamic range from 1.0×10?7 to 8.0×10?5 M and a detection limit of 3.9×10?8 M for norepinephrine. In addition, this modified electrode was used for simultaneous determination of norepinephrine, tyrosine and nicotine.  相似文献   

12.
A nanocomposite system based on coumarin derivative and graphene sheet was used to prepare a new electrochemical sensor. The objective of the mentioned nanocomposite was to investigate novel electrochemical properties enabling the quantification of epinephrine (Ep). Cyclic voltammetry was used to study the redox properties of the mentioned modified electrode at different scan rates. Henceforward, the electrocatalytic oxidation of Ep at the surface of the modified electrode was considered. The data has shown excellent catalytic activity of the modified electrode for the electrooxidation of Ep, which leads to a reduction of overpotential for more than 238 mV. According to differential pulse voltammetry (DPV), the oxidation of Ep showed a dynamic range between 0.1 and 1000.0 μM and the detection limit (3s) of 0.011 μM. Besides, DPV was used for the determination of Ep at the mentioned modified electrode in the presence of serotonin.  相似文献   

13.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

14.
An electroactive metal cyanometallate complex, nickel aquapentacyanoferrate (NAPCF) was synthesized and characterized using XRD and UV‐vis spectral studies. The solid complex was then mechanically immobilized on the surface of a paraffin impregnated graphite electrode (PIGE) and the NAPCF modified electrode was characterized using cyclic voltammetry. The dependence of the modified electrode was tested in terms of supporting electrolyte, scan rate and pH of the medium. The electrocatalytic oxidation of sulfite at the modified electrode was investigated by cyclic voltammetry, hydrodynamic voltammetry and chronoamperometry techniques. It was found that the NAPCF modified electrode efficiently exhibited electrocatalytic activity for the oxidation of sulfite with relatively high sensitivity, selectivity and long life of activity. Based on the electrocatalytic oxidation, the NAPCF modified electrode was used as a sensor for the determination of sulfite. The linear working range for the determination of sulfite was 2.78×10?6 M to 3.00×10?3 M with a detection limit of 9.26×10?7 M. The electrode was applied for the determination of sulfite in real samples satisfactorily.  相似文献   

15.
《Electroanalysis》2006,18(23):2337-2342
The voltammetric behavior of α‐tocopherol in the presence of vegetable oil is studied at a polypyrrole modified Pt electrode in a 1,2‐dichloroethane‐ethanol medium with cyclic voltammetry. Cyclic voltammogram of α‐tocopherol showed a well‐defined oxidation peak; the peak potential shifting toward less positive and a much higher peak current obtained at a polypyrrole modified electrode than that obtained at the unmodified Pt electrode. An electroanalytical method for the determination of α‐tocopherol based on its electrochemical oxidation at the polypyrrole modified Pt electrode is developed. Using differential pulse voltammetry, the peak currents were found to increase linearly with the α‐tocopherol concentration over the range of 5.0 to 300 μM, with a sensitivity of 5.38×10?2 A L mol?1 and the limit of detection of 1.5 μM (S/N=3), the detection time being about 90 s for each assay. The interference of other synthetic antioxidants such as TBHQ, BHA and BHT to the analysis of α‐tocopherol was investigated. The developed method is applied to the quantification of tocopherols in six vegetable oils, showing that the results are in good agreement with those by HPLC method.  相似文献   

16.
《Electroanalysis》2005,17(11):941-945
A glassy carbon electrode (GCE) was modified with electropolymerized films of cresol red in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode shows an excellent electrocatalytic effect on the oxidation of norepinephrine (NE). The peak current increases linearly with the concentration of NE in the range of 3×10?6–3×10?5 M by the differential pulse voltammetry. The detection limit was 2×10?7 M. The modified electrode can also separate the electrochemical responses of norepinephrine and ascorbic acid (AA). The separation between the anodic peak potentials of NE and AA was 190 mV by the cyclic voltammetry. And the responses to NE and AA at the modified electrode were relatively independent.  相似文献   

17.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

18.
A chemically modified electrode was successfully fabricated by means of depositing a thin layer of nickel hexacyanoferrate (NiHCF) on an amine adsorbed graphite paraffin wax composite electrode using a new approach. The electrode was further coated with Nafion. The electrochemical characteristics of the modified electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The modified electrode catalyzed dopamine (DA) oxidation in the concentration range of 1.5×10?6 to 1.2×10?3 M without the interference from ascorbic acid (AA). A detection limit of 4.9×10?7 M was obtained for DA in the presence of AA with a correlation coefficient of 0.9972 based on S/N=3. Flow injection analysis was used for the determination of dopamine with excellent reproducible results. The analytical utility of the sensor was evaluated for detection of DA in urine.  相似文献   

19.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

20.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号