首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.  相似文献   

2.
We report an available approach for quickly fabricating CdS QD‐polymer nanocomposites via frontal polymerization (FP). First, we synthesized (3‐mercaptopropyl)‐1‐trimethoxysilane (MPS)‐capped CdS quantum dots (QDs). With these MPS‐capped CdS QDs containing mercapto groups, MPS‐capped CdS QDs can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP. A variety of features for preparing QD‐polymer nanocomposites, such as initiator concentration and CdS concentration, were thoroughly investigated. The fluorescence properties of QD‐polymer nanocomposites prepared via FP are comparatively investigated on the basis of ultraviolet–visible (UV–vis) spectra and photoluminescence (PL) spectra. Results show that the PL intensity of QD‐polymer nanocomposites prepared via the FP method is superior to that obtained by the traditional batch polymerization (BP) method. In addition, by measuring the changes of PL intensity of the samples immersed in different concentrations of copper acetate solution, we found the QD‐polymer nanocomposites can be ultrasensitive to copper ions. This FP process can be exploited as a facile and rapid way for synthesis QD‐polymer nanocomposites on a large scale, avoiding the fluorescence quenching of nanocrystals during incorporation nanocrystals into polymer matrices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2170–2177, 2010  相似文献   

3.
本文采用热注入法合成了以油胺/油酸为表面配体的、粒径均一的CdSe量子点(CdSe QDs)。调节表面配体交换中辛硫醇与CdSe QDs的比例,研究了表面配体对CdSe QDs光致发光及电致化学发光性质的影响,并提出了CdSe QDs的发光模型。结果表明,辛硫醇表面配体显著影响CdSe QDs的带边发射和深能级陷阱发射,因而导致CdSe QDs光致发光强度的显著降低,以及电致化学发光强度的增加。上述结果为进一步提高量子点的发光性能提供了依据。  相似文献   

4.
In this work, the role of conducting [poly (p-phenylinevinylene) (PPV)] and nonconducting (polystyrene) polymers on the properties of their respective composites with CdSe quantum dots of varied sizes has been investigated. The emission and structural properties of polymer–CdSe composites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. Smaller CdSe quantum dots (size, ∼5 nm) ensures efficient charge transfer process across polymer–CdSe interface as evident by almost complete quenching of photoluminescence (PL) emission as compared to larger CdSe quantum dots (size, ∼7 nm). Presence of residual trioctylphosphine (TOP)/ tri-n-octylphosphine-oxide (TOPO) species and agglomeration of particles act as a hindrance for quenching of emission and hence charge transfer for larger CdSe nanocrystallites. Emission studies indicated an increased conjugation length for PPV polymers in different solvents (toluene, pyridine) and in solid state. Nonconducting polymer polystyrene shows charge transfer across polymer–CdSe interface as well. However, polystyrene polymer has a shorter chain length, which ensures maximum coverage on the surface of CdSe nanocrystallites and provides better photostability to CdSe QDs within the polymer matrix as compared to that for PPV–CdSe nanocomposites.  相似文献   

5.
Photoluminescence (PL) intermittency characteristics are examined for single quantum dots (QDs) in a CdSe QD sample synthesized at a slow rate at 75 degrees C. Although the PL quantum efficiency was relatively low ( approximately 0.25), we noticed that the PL intensity of single CdSe QDs fluctuated on a subsecond time scale with short-lived "on" and "off" states. The subsecond PL intensity fluctuations of CdSe QDs are different from "on" and "off" PL blinking generally observed for QDs fluctuating on a millisecond to minute time scale. We characterized single QDs by identifying polarized excitations, topographic imaging using atomic force microscopy (AFM), and transmission electron microscopy (TEM). From analysis of the PL intensity trajectories from >100 single CdSe QDs, the average intermittency time was 213 ms. From the PL quantum efficiency, slow growth of QDs, intensity trajectory analyses, and previous reports relating surface trap states and PL properties of QDs, we attribute the subsecond PL intensity fluctuations of single CdSe QDs and short-lived "on" and "off" states to a high-density distribution of homogeneous surface trap states.  相似文献   

6.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

7.
Herein, we report the synthesis of quantum dots (QDs)/polymer nanocomposites by reversible addition‐fragmentation chain transfer (RAFT) polymerization in miniemulsions using a grafting from approach. First, the surfaces of CdS and CdSe QDs were functionalized using a chain transfer agent, a trisalkylphosphine oxide incorporating 4‐cyano‐4‐(thiobenzoylsulfanyl)pentanoic acid moieties. Using a free radical initiator (AIBN) to activate the RAFT process, a polystyrene (PS) block was grafted from the surface of the QDs. Quantum confinement effects were identified for the nanocomposite obtained, so attesting to the integrity of the QDs after the polymerization. Free PS chains were also present in the final nanocomposite, indicating that the RAFT polymerization from the surface of the QDs was accompanied by conventional free radical polymerization. After isolating the nanocomposite particles, a second poly(n‐butyl acrylate) block was tentatively grown from the initial PS block. The first results indicated a successful polymerization of the second polymer and show the potential of the current strategy to prepare block copolymers from the surface of the RAFT‐modified QDs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5367–5377, 2009  相似文献   

8.
In this work, tri-octyl phosphine/tri-octyl phosphine oxide (TOPO)-capped cadmium selenide (CdSe) quantum dots (QDs) of varied sizes (5–9 nm), prepared by varying the input Cd:Se precursor ratio using chemical route, were dispersed in conducting polymer matrices viz. poly[2-methoxy, 5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT). By using a binary solvent mixture (pyridine–chloroform), homogeneous dispersion of CdSe nanocrystals in polymers (MEH-PPV, P3HT) could be realized. The properties of the resulting dispersions could be tailored by the composition and concentration of QDs in polymer. The emission and structural properties of polymer–CdSe nanocomposites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. An effective quenching of photoluminescence emission in the polymer nanocomposite was observed for smaller CdSe quantum dots (size ∼6 nm) as compared to larger CdSe quantum dots (size ∼9 nm), thus ensuring efficient charge transfer process across the polymer–CdSe interface in the former case. The incomplete quenching, particularly for MEH-PPV:CdSe nanocomposites, could be as a result of insufficient coverage of polymers on the surface of CdSe nanocrystallites, mainly due to phase segregation for TOPO-stripped CdSe nanocrystallites. The superior morphology and optical properties of polymer nanocomposite (P3HT:CdSe QDs) could play a pivotal role for the realization of effective charge separation and transport in hybrid solar cells.  相似文献   

9.
Nanocomposites based on CdSe or CdSe/ZnS quantum dots (QDs) and poly(methyl methacrylate) (PMMA) of different molecular weights and functionality were synthesized by ligand exchange of oleic acid with RAFT-based PMMA. The successful ligand exchange was confirmed by dynamic light scattering in combination with the approach “macromolecules—ghosts” and transmission electron microscopy. Comparative study of mono- and telechelics of PMMA revealed the similarities and differences in their behavior in formation of complexes with QDs and the optical properties of the corresponding nanocomposites. Telechelics exhibited higher efficiency in the complex formation and seemed to be promising candidates for the construction of devices based on QDs and polymer matrix for optical applications.  相似文献   

10.
A unique ability of semiconductor nanocrystals (NCs) is the generation and accommodation of multiple excitons through either optical or electric current pumping. The development and improvement of NC-based optoelectronic devices that utilize multiple excitons requires the understanding of multiple exciton dynamics and their efficient conversion to emitted photons or external charges prior to exciton-exciton annihilation. Here, we demonstrate that significantly enhanced multiexciton dissociation efficiency can be achieved in CdSe quantum rods (QRs) compared to CdSe quantum dots (QDs). Using transient absorption spectroscopy, we reveal the formation of bound one-dimensional exciton states in CdSe QRs and that multiple exciton Auger recombination occurs primarily via exciton-exciton collision. Furthermore, quantum confinement in the QR radial direction facilitates ultrafast exciton dissociation by interfacial electron transfer to adsorbed acceptors. Under high excitation intensity, more than 21 electrons can be transferred from one CdSe QR to adsorbed methylviologen molecules, greatly exceeding the multiexciton dissociation efficiency of CdSe QDs.  相似文献   

11.
CdSe quantum dots (QDs) dispersed ferroelectric liquid crystal (FLC) has been subjected to small and wide-angle X-ray scattering and atomic force microscopy to understand the molecular organization in chiral smectic C (SmC*) phase. SAXS indicates that the presence of QDs causes enhancement in the smectic layer separation. The smectic order parameter for neat FLC and FLC–QDs mixtures is obtained in the range of 0.6 to 0.85. Both smectic order parameter and structural tilt are found to be lesser for FLC–QDs mixtures as compared to neat FLC. The insertion of QDs in SmC* matrix causes localized smectic layer distortion in such a way that spontaneous polarization remains almost the same but the electro-optic switching of molecules becomes faster. We have outlined the superiority of FLC–QDs mixtures for electrical energy storage and their suitability in electronic devices.  相似文献   

12.
An alternating triarylamine‐functionalized fluorene‐based copolymer synthesized using a Suzuki–Miyaura cross‐coupling procedure is used as blue emitting layer in polymer light‐emitting diodes (PLEDs). Subsequently, the effects of CdSe/ZnS quantum dots (QDs) on the optoelectronic properties of the copolymer are investigated. Therefore, CdSe/ZnS QDs are embedded into the copolymer matrix and hybrid PLEDs are fabricated. The devices comprised of CdSe/ZnS QDs reveal enhanced performances, yielding about 3.4 times more luminous efficiency than that of the device without QDs. Further enhancement is achieved by using electron transport layer; the luminous efficiency rose from 0.065 to 1.740 cd A?1 for the hybrid PLEDs, corresponding to a superb 27‐fold intensification of the efficiency. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 147–156  相似文献   

13.
Nanocomposites of poly(3-hexylthiophene)-cadmium selenide (P3HT-CdSe) were synthesized by directly grafting vinyl-terminated P3HT onto [(4-bromophenyl)methyl]dioctylphosphine oxide (DOPO-Br)-functionalized CdSe quantum dot (QD) surfaces via a mild palladium-catalyzed Heck coupling, thereby dispensing with the need for ligand exchange chemistry. The resulting P3HT-CdSe nanocomposites possess a well-defined interface, thus significantly promoting the dispersion of CdSe within the P3HT matrix and facilitating the electronic interaction between these two components. The photophysical properties of nanocomposites were found to differ from the conventional composites in which P3HT and CdSe QDs were physically mixed. Solid-state emission spectra of nanocomposites suggested the charge transfer from P3HT to CdSe QDs, while the energy transfer from 3.5 nm CdSe QD to P3HT was implicated in the P3HT/CdSe composites. A faster decay in lifetime further confirmed the occurrence of charge transfer in P3HT-CdSe nanocomposites.  相似文献   

14.
荧光磁性双功能树状分子微球的制备与表征   总被引:1,自引:0,他引:1  
采用化学共沉淀法, 以FeCl3·6H2O和FeSO4·7H2O为原料制备了磁性Fe3O4纳米颗粒, 采用树状大分子对其进行修饰, 然后通过树状大分子具有的大量空腔及末端丰富的氨基, 经吸附、 键合, 与大量巯基乙酸修饰的CdSe/CdS量子点连接, 得到三代具有荧光磁性双功能的树状分子微球, 并对其进行结构表征与性能测试. 结果表明: 三代复合后的微球的平均粒径分别为15, 34和49 nm; 一代荧光磁性微球的发光性能最佳, 其量子产率达24.1%; 零代荧光磁性微球磁性能最优, 其饱和磁化强度为15.96 A·m2/kg. 这种具有荧光和磁性的双功能纳米复合微粒有望在免疫检测、 靶向治疗、 荧光追踪和磁性分离等方面得到广泛应用.  相似文献   

15.
Spectral and nonlinear optical properties of cadmium octanoate composites containing CdSe nanoparticles (NPs) have been studied by using optical absorption spectroscopy and laser scanning technique (Z-scan). CdSe NPs are chemically synthesised in thermotropic ionic liquid crystal (ILC) phase of cadmium octanoate which is used as nanoreactor. Anisotropic glassy nanocomposites are obtained by the rapid cooling of the ILC phase of nanocomposites to room temperature. The sizes of the CdSe NPs are determined from the absorption spectra. The thermo-optical nonlinearity of the new nanocomposites is characterised by extremely large value of the nonlinear refractive index, n2, under relatively low-powered CW laser irradiation. This nonlinearity is caused by (1) the efficient light-induced heating due to the CdSe NPs strong exciton absorption, and (2) consequent thermal dissipation, which in turn, produces the photoelastic tensions in the glassy smectic matrix.  相似文献   

16.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

17.
A new luminescent composite based on quantum dots of CdSe immobilized on the polymer LC matrix prepared through the graft polymerization of the monomer of 4-(ω-acryloyloxyhexyloxy)benzoic acid on a fluorocarbon support after its preliminary irradiation with vacuum ultraviolet light is elaborated. The structure, composition, and optical characteristics of the prepared composite are studied via the methods of the FTIR spectroscopy, energy-dispersive and wave-dispersive analyses, and luminescence spectroscopy. The CdSe particles are shown to interact with the carboxyl groups of mesogenic fragments of the LC polymer, and this interaction leads to the integration of quantum dots into the ordered LC structure of the composite. As a result of immobilization, the luminescence peak of the quantum dots is shifted toward lower wavelengths owing to the interaction between the nanoparticles and the polymer LC matrix.  相似文献   

18.
Polyvinyl alcohol (PVA) with different molecular weights (8000, 14,000, and 132,000 g/mol) capped lead selenide (PbSe) quantum dots (QDs) are prepared. The nanocomposites are characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM studies show that the particle size of PbSe QDs decrease with the increase in PVA molecular weight and/or PVA amount. This may be due to the increase in molecular weight inhibiting further growth of PbSe into the polymer matrix. Thermogravimetric analysis showed that the introduction of PbSe QDs into PVA decreases the crystallinity of the polymer. The optical absorption spectroscopy of prepared nanocomposites showed that the absorption peaks are strongly shifted to the lower wavelength (blue shift) from near infrared region to visible region by increasing the PVA molecular weight. The (IV) characteristic curves of the PVA/PbSe nanocomposite films under illumination showed a photovoltaic cell‐like behavior. The results indicated that as the molecular weight of polymer increases, the conversion efficiency increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Size dependence of spin dynamics in colloidal CdSe quantum dots (QDs) are investigated with circularly polarized pump-probe transmission spectroscopy at room temperature. The excitation energy is tuned to resonance with the lowest exciton (1S(h)1S(e)) energy of the CdSe QDs. The exciton spin dynamics of CdSe QD with the diameter of 5.2 nm shows monoexponential decay with a typical time constant of about 1-3 ps depending on the excitation energy. For the cases of CdSe QDs with smaller size (with the diameter of 4.0 and 2.4 nm), the exciton spin relaxation shows biexponential decay, a fast component with time constant of several ps and a slow one with time constant of hundreds of ps to nanosecond time scale. The fast spin relaxation arises from the bright-dark transition, i.e., J = ±1 ? -/+2 transition. This process is dominated by the hole spin flips, while the electron spin conserves. The slow spin relaxation is attributed to the intralevel exciton transitions (J = ±1 ? -/+1 transition), which is relevant to the electron spin flip. Our results indicate that the exciton spin relaxation pathways in CdSe QD are controllable by monitoring the particle size, and polarized pump-probe spectroscopy is proved to be a sensitive method to probe the exciton transition among the fine structures.  相似文献   

20.
Structural and optical properties of cadmium alkanoates nanocomposites with cadmium sulfide (CdS) quantum dots (QDs) have been studied by using various techniques: small angle X-ray scattering, transmission electron microscopy, optical absorption spectroscopy and photoluminescence. QDs are chemically synthesised in thermotropic ionic liquid crystalline (ILC) phase of cadmium alkanoates that have smectic-type ordering and are used as nanoreactors. Anisotropic glassy nanocomposites are obtained by rapid cooling the thermotropic ILC nanocomposites to the room temperature. For synthesis of CdS QDs are used cadmium capronate matrix or cadmium octanoate matrix and their binary mixture. Our results show that in the new cadmium alkanoates matrices, the CdS QDs have a small dispersion of their sizes, their shape is nearly spherical, they are stable over time and they are ordered in a layered smectic A matrix. QDs in cadmium octanoate and in cadmium capronate matrices have the dominant characteristic sizes of 2.7 and 2.8 nm, respectively. In the binary mixture, the QDs have two dominant characteristic sizes of 2.7 and 3.6 nm. The glassy nanocomposites show spectra both of absorption and of photoluminescence in near-ultraviolet and blue visible spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号