首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the Ising model (with interaction constant J>0) on the Cayley tree of order k≥2 it is known that for the temperature TT c,k =J/arctan?(1/k) the limiting Gibbs measure is unique, and for T<T c,k there are uncountably many extreme Gibbs measures. In the Letter we show that if \(T\in(T_{c,\sqrt{k}}, T_{c,k_{0}})\), with \(\sqrt{k} then there is a new uncountable set \({\mathcal{G}}_{k,k_{0}}\) of Gibbs measures. Moreover \({\mathcal{G}}_{k,k_{0}}\ne {\mathcal{G}}_{k,k'_{0}}\), for k 0k0. Therefore if \(T\in (T_{c,\sqrt{k}}, T_{c,\sqrt{k}+1})\), \(T_{c,\sqrt{k}+1} then the set of limiting Gibbs measures of the Ising model contains the set {known Gibbs measures}\(\cup(\bigcup_{k_{0}:\sqrt{k}.  相似文献   

2.
The Neumann Schrödinger operator \(\mathcal{L}\) is considered on a thin 2D star-shaped junction, composed of a vertex domain Ωint and a few semi-infinite straight leads ω m , m = 1, 2, ..., M, of width δ, δ ? diam Ωint, attached to Ωint at Γ ? ?Ωint. The potential of the Schrödinger operator l ω on the leads vanishes, hence there are only a finite number of eigenvalues of the Neumann Schrödinger operator L int on Ωint embedded into the open spectral branches of l ω with oscillating solutions χ ±(x, p) = \(e^{ \pm iK_ + x} e_m \) of l ω χ ± = p 2 χ ±. The exponent of the open channels in the wires is
$K_ + (\lambda ) = p\sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = \sqrt \lambda P_ + $
, with constant e m , on a relatively small essential spectral interval Δ ? [0, π 2 δ ?2). The scattering matrix of the junction is represented on Δ in terms of the ND mapping
$\mathcal{N} = \frac{{\partial P_ + \Psi }}{{\partial x}}(0,\lambda )\left| {_\Gamma \to P_ + \Psi _ + (0,\lambda )} \right|_\Gamma $
as
$S(\lambda ) = (ip\mathcal{N} + I_ + )^{ - 1} (ip\mathcal{N} - I_ + ), I_ + = \sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = P_ + $
. We derive an approximate formula for \(\mathcal{N}\) in terms of the Neumann-to-Dirichlet mapping \(\mathcal{N}_{\operatorname{int} } \) of L int and the exponent K ? of the closed channels of l ω . If there is only one simple eigenvalue λ 0 ∈ Δ, L intφ0 = λ 0φ0 then, for a thin junction, \(\mathcal{N} \approx |\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} \) with
$\vec \phi _0 = P_ + \phi _0 = (\delta ^{ - 1} \int_{\Gamma _1 } {\phi _0 (\gamma )} d\gamma ,\delta ^{ - 1} \int_{\Gamma _2 } {\phi _0 (\gamma )} d\gamma , \ldots \delta ^{ - 1} \int_{\Gamma _M } {\phi _0 (\gamma )} d\gamma )$
and \(P_0 = \vec \phi _0 \rangle |\vec \phi _0 |^{ - 2} \langle \vec \phi _0 \),
$S(\lambda ) \approx \frac{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} - I_ + }}{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} + I_ + }} = :S_{appr} (\lambda )$
. The related boundary condition for the components P +Ψ(0) and P +Ψ′(0) of the scattering Ansatz in the open channel \(P_ + \Psi (0) = (\bar \Psi _1 ,\bar \Psi _2 , \ldots ,\bar \Psi _M ), P_ + \Psi '(0) = (\bar \Psi '_1 , \bar \Psi '_2 , \ldots , \bar \Psi '_M )\) includes the weighted continuity (1) of the scattering Ansatz Ψ at the vertex and the weighted balance of the currents (2), where
$\frac{{\bar \Psi _m }}{{\bar \phi _0^m }} = \frac{{\delta \sum\nolimits_{t = 1}^M { \bar \Psi _t \bar \phi _0^t } }}{{|\vec \phi _0 |^2 }} = \frac{{\bar \Psi _r }}{{\bar \phi _0^r }} = :\bar \Psi (0)/\bar \phi (0), 1 \leqslant m,r \leqslant M$
(1)
,
$\sum\limits_{m = 1}^M {\bar \Psi '_m } \bar \phi _0^m + \delta ^{ - 1} (\lambda - \lambda _0 )\bar \Psi /\bar \phi (0) = 0$
(1)
. Conditions (1) and (2) constitute the generalized Kirchhoff boundary condition at the vertex for the Schrödinger operator on a thin junction and remain valid for the corresponding 1D model. We compare this with the previous result by Kuchment and Zeng obtained by the variational technique for the Neumann Laplacian on a shrinking quantum network.
  相似文献   

3.
Common bean plants were grown in soil and irrigated with water solutions containing different concentrations of \(\hbox{Fe}_3\hbox{O}_4\) nanoparticles (NPs) with a mean diameter close to 10 nm. No toxicity on plant growth has been detected as a consequence of Fe deficiency or excess in leaves. In order to track the \(\hbox{Fe}_3\hbox{O}_4\) NPs, magnetization measurements were performed in soils and in three different dried organs of the plants: roots, stems, and leaves. Some magnetic features of both temperature and magnetic field dependence of magnetization M(TH) arising from \(\hbox{Fe}_3\hbox{O}_4\) NPs were identified in all the three organs of the plants. Based on the results of saturation magnetization \(M_\mathrm{s}\) at 300 K, the estimated number of \(\hbox{Fe}_3\hbox{O}_4\) NPs was found to increase from 2 to 3 times in leaves of common bean plants irrigated with solutions containing magnetic material. The combined results indicated that M(TH) measurements, conducted in a wide range of temperature and applied magnetic fields up to 70 kOe, constitute a useful tool through which the uptake, translocation, and accumulation of magnetic nanoparticles by plant organs may be monitored and tracked.  相似文献   

4.
Rather than sticking to the full U(3)3 approximate symmetry normally invoked in Minimal Flavour Violation, we analyze the consequences on the current flavour data of a suitably broken U(2)3 symmetry acting on the first two generations of quarks and squarks. A definite correlation emerges between the ΔF=2 amplitudes \(\mathcal{M}( K^{0} \to \bar{K}^{0} )\), \(\mathcal{M}( B_{d} \to \bar{B}_{d} )\) and \(\mathcal{M}( B_{s} \to \bar{B}_{s} )\), which can resolve the current tension between \(\mathcal{M}( K^{0} \to \bar{K}^{0} )\) and \(\mathcal{M}( B_{d} \to \bar{B}_{d} )\), while predicting \(\mathcal{M}( B_{s}\to \bar{B}_{s} )\). In particular, the CP violating asymmetry in B s ψφ is predicted to be positive S ψφ =0.12±0.05 and above its Standard Model value (S ψφ =0.041±0.002). The preferred region for the gluino and the left-handed sbottom masses is below about 1÷1.5 TeV. An existence proof of a dynamical model realizing the U(2)3 picture is outlined.  相似文献   

5.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Stark-effect splitting of the hyperfine structure of39K19 F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J =±1)-transitions were induced electrically. Completely resolved spectra of KF in theJ=1 rotational state have been measured. The obtained quantities are: The electric dipolmomentμ e l of the molecul forv=0,1 and 2; the rotational magnetic dipolmomentμ J forv=0,1; the difference of the magnetic shielding (σ ? σ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ ? ξ). The numerical values are
$$\begin{array}{*{20}c} {\mu _{e1} = 8,585(4)deb,} \\ {\frac{{(\mu _{e1} )_{\upsilon = 1} }}{{(\mu _{e1} )_{\upsilon = 0} }} = 1,0080,} \\ {{{\mu _J } \mathord{\left/ {\vphantom {{\mu _J } J}} \right. \kern-\nulldelimiterspace} J} = ( - )2352(10) \cdot 10^{ - 6} \mu _B ,} \\ {(\sigma _ \bot - \sigma _\parallel )F = ( - )2,19(9) \cdot 10^{ - 4} ,} \\ {(\sigma _ \bot - \sigma _\parallel )K = ( - )12(9) \cdot 10^{ - 4} ,} \\ {(\xi _ \bot - \xi _\parallel ) = 3 (1) \cdot 10^{ - 30} {{erg} \mathord{\left/ {\vphantom {{erg} {Gau\beta ^2 }}} \right. \kern-\nulldelimiterspace} {Gau\beta ^2 }}} \\ \end{array} $$  相似文献   

6.
In this paper, we discuss the coherence of the reduced state in system H A ?H B under taking different quantum operations acting on subsystem H B . Firstly, we show that for a pure bipartite state, the coherence of the final subsystem H A under the sum of two orthonormal rank 1 projections acting on H B is less than or equal to the sum of the coherence of the state after two orthonormal projections acting on H B , respectively. Secondly, we obtain that the coherence of reduced state in subsystem H A under random unitary channel \({\Phi }(\rho )={\sum }_{s}\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B , is equal to the coherence of the state after each operation \({\Phi }_{s}(\rho )=\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B for every s. In addition, for general quantum operation \({\Phi }(\rho )={\sum }_{s}F_{s}\rho F_{s}^{\ast }\) on H B , we get the relation
$$ C\left (\left ((I\otimes {\Phi })\rho ^{AB}\right )^{A}\right )\leq \sum \limits _{s}C\left (\left ((I\otimes {\Phi }_{s})\rho ^{AB}\right )^{A}\right ). $$
  相似文献   

7.
The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature (T?>?T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T?<<?n 0 g B E p ?<<?k B T (n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as \( {\tau}_{dd12}^{-1}\propto {e}^{-E/{k}_BT} \) and τ c12?∝?T ?5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T ?3 behavior of the thermal conductivity. In the low-temperature limit, k B T?<<?n 0 g B , E p ?>>?k B T, since the relaxation rate \( {\tau}_{c12}^{-1} \) is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit (k B T?>?n 0 g B ) and low momenta, the relaxation rates \( {\tau}_{c12}^{-1} \) and \( {\tau}_{dd12}^{-1} \) change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.  相似文献   

8.
We present explicit formulas for sums of products of Apostol-Bernoulli and Apostol-Euler numbers of the form
$\sum\limits_{_{m_1 , \cdots ,m_N \geqslant n}^{m_1 + \cdots + m_N = n} } {\left( {_{m_1 , \cdots m_N }^n } \right)B_{m_1 } (q) \cdots B_{m_N } (q),} \sum\limits_{_{m_1 , \cdots ,m_N \geqslant n}^{m_1 + \cdots + m_N = n} } {\left( {_{m_1 , \cdots m_N }^n } \right)E_{m_1 } (q) \cdots E_{m_N } (q),}$
where N and n are positive integers, B m (q) n stand for the Apostol-Bernoulli numbers, E m (q) for the Apostol-Euler numbers, and \(\left( {\begin{array}{*{20}c} n \\ {m_1 , \cdots ,m_N } \\ \end{array} } \right) = \frac{{n!}}{{m_1 ! \cdots m_N !}}.\) Our formulas involve Stirling numbers of the first kind. We also derive results for Apostol-Bernoulli and Apostol-Euler polynomials. As an application, for q = 1 we recover results of Dilcher, and our paper can be regarded as a q-extension of that of Dilcher.
  相似文献   

9.
Temperature dependences of the resistivity ρ(T) of samples of granular high-temperature superconductor YBa2Cu3O7 – δ are measured at various transverse external magnetic fields at 0 < H ext < 1900 Оe in the temperature range from the upper Josephson critical temperature of “weak bonds” T c2J to temperatures slightly exceeding the superconducting transition temperature T c . Based on the data obtained, the behavior of the field dependences of the critical temperatures of superconducting grains and “weak bonds,” and temperature and field dependences of the magnetic contribution to the resistivity \(\left[ {\Delta \rho \left( {T,H} \right) = \rho {{\left( T \right)}_{{H_{ext}} = const}} - \rho {{\left( T \right)}_{{H_{ext}} = 0}}} \right]\). It is shown that the behavior of the magnetic contribution to the resistivity Δρ along the line of the phase transition related to the onset of the magnetic field penetration in the form of Abrikosov vortices into the subsystem of superconducting grains T c1g (H ext) is anomalous. The concepts on the magnetic flux redistribution between both subsystems of two-level HTSC near in the vicinity of T c1g : the Josephson vortex decreases, and the Abrikosov vortex density increases.  相似文献   

10.
In the paper we discuss possible applications of the so-called stroboscopic tomography (stroboscopic observability) to selected decoherence models of 2-level quantum systems. The main assumption behind our reasoning claims that the time evolution of the analyzed system is given by a master equation of the form \(\dot {\rho } = \mathbb {L} \rho \) and the macroscopic information about the system is provided by the mean values m i (t j ) = T r(Q i ρ(t j )) of certain observables \(\{Q_{i}\}_{i=1}^{r} \) measured at different time instants \(\{t_{j}\}_{j=1}^{p}\). The goal of the stroboscopic tomography is to establish the optimal criteria for observability of a quantum system, i.e. minimal value of r and p as well as the properties of the observables \(\{Q_{i}\}_{i=1}^{r} \).  相似文献   

11.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of23Na19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J=±1)-transitions were induced electrically. Completely resolved spectra of NaF in theJ=1 rotational state have been measured in several vibrational states. The obtained quantities are: The electric dipolmomentμ el of the molecule forv=0, 1 and 2, the rotational magnetic dipolmomentμ J forv=0, 1, the difference of the magnetic shielding (σ -σ ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ -ξ ), the spin rotational constantsc F andc Na, the scalar and the tensor part of the molecular spin-spin interaction, the quadrupol interactione q Q forv=0, 1 and 2. The numerical values are
$$\begin{gathered} \mu _{\mathfrak{e}1} = 8,152(6) deb \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 1)}}{{\mu _{\mathfrak{e}1} (v = 0)}} = 1,007985 (7) \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 2)}}{{\mu _{\mathfrak{e}1} (v = 1)}} = 1,00798 (5) \hfill \\ \mu _J = - 2,89(3)10^{ - 6} \mu _B \hfill \\ \frac{{\mu _J (v = 0)}}{{\mu _J (v = 1)}} = 1,020 (13) \hfill \\ (\sigma _ \bot - \sigma _\parallel )_{Na} = - 51(12) \cdot 10^{ - 5} \hfill \\ (\sigma _ \bot - \sigma _\parallel )_F = - 51(12) \cdot 10^{ - 6} \hfill \\ (\xi _ \bot - \xi _\parallel ) = - 1,59(120)10^{ - 30} erg/Gau\beta ^2 \hfill \\ {}^CNa/^h = 1,7 (2)kHz \hfill \\ {}^CF/^h = 2,2 (2)kHz \hfill \\ {}^dT/^h = 3,7 (2)kHz \hfill \\ {}^dS/^h = 0,2 (2)kHz \hfill \\ eq Q/h = - 8,4393 (19)MHz \hfill \\ \frac{{eq Q(v = 0)}}{{eq Q(v = 1)}} = 1,0134 (2) \hfill \\ \frac{{eq Q(v = 1)}}{{eq Q(v = 2)}} = 1,0135 (2) \hfill \\ \end{gathered} $$  相似文献   

12.
We study the conductivity of two-dimensional interacting electrons on the half-filled Nth Landau level with N?1 in the presence of quenched disorder. The existence of the unidirectional charge-density wave state at temperature T<T c , where T c is the transition temperature, leads to the anisotropic conductivity tensor. We find that the leading anisotropic corrections are proportional to (T c ?T)/T c just below the transition, in accordance with the experimental findings. Above T c , the correlations corresponding to the unidirectional charge-density wave state below T c result in corrections to the conductivity proportional to \(\sqrt {{{T_c } \mathord{\left/ {\vphantom {{T_c } {T - T_c }}} \right. \kern-\nulldelimiterspace} {T - T_c }}} \).  相似文献   

13.
The Andreev subgap conductance at 0.08–0.2 K in thin-film superconductor (aluminum)–insulator–normal metal (copper, hafnium, or aluminum with iron-sublayer-suppressed superconductivity) structures is studied. The measurements are performed in a magnetic field oriented either along the normal or in the plane of the structure. The dc current–voltage (I–U) characteristics of samples are described using a sum of the Andreev subgap current dominating in the absence of the field at bias voltages U < (0.2–0.4)Δc/e (where Δc is the energy gap of the superconductor) and the single-carrier tunneling current that predominates at large voltages. To within the measurement accuracy of 1–2%, the Andreev current corresponds to the formula \({I_n} + {I_s} = {K_n}\tanh \left( {{{eU} \mathord{\left/ {\vphantom {{eU} {2k{T_{eff}}}}} \right. \kern-\nulldelimiterspace} {2k{T_{eff}}}}} \right) + {K_s}{{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}\) following from a theory that takes into account mesoscopic phenomena with properly selected effective temperature T eff and the temperature- and fieldindependent parameters K n and K s (characterizing the diffusion of electrons in the normal metal and superconductor, respectively). The experimental value of K n agrees in order of magnitude with the theoretical prediction, while K s is several dozen times larger than the theoretical value. The values of T eff in the absence of the field for the structures with copper and hafnium are close to the sample temperature, while the value for aluminum with an iron sublayer is several times greater than this temperature. For the structure with copper at T = 0.08–0.1 K in the magnetic field B|| = 200–300 G oriented in the plane of the sample, the effective temperature T eff increases to 0.4 K, while that in the perpendicular (normal) field B ≈ 30 G increases to 0.17 K. In large fields, the Andreev conductance cannot be reliably recognized against the background of single- carrier tunneling current. In the structures with hafnium and in those with aluminum on an iron sublayer, the influence of the magnetic field is not observed.  相似文献   

14.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of133Cs19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. Electrically induced (Δ m J =±1)-transitions have been measured in theJ=1 rotational state, υ=0, 1 vibrational state. The obtained quantities are: The electric dipolmomentμ el of the molecule for υ=0, 1; the rotational magnetic dipolmomentμ J for υ=0, 1; the anisotropy of the magnetic shielding (σ -σ‖) by the electrons of both nuclei as well as the anisotropy of the molecular susceptibility (ξ -ξ‖), the spin rotational interaction constantsc Cs andc F, the scalar and the tensor part of the nuclear dipol-dipol interaction, the quadrupol interactioneqQ for υ=0, 1. The numerical values are:
$$\begin{gathered} \mu _{el} \left( {\upsilon = 0} \right) = 73878\left( 3 \right)deb \hfill \\ \mu _{el} \left( {\upsilon = 1} \right) - \mu _{el} \left( {\upsilon = 0} \right) = 0.07229\left( {12} \right)deb \hfill \\ \mu _J /J\left( {\upsilon = 0} \right) = - 34.966\left( {13} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \mu _J /J\left( {\upsilon = 1} \right) = - 34.823\left( {26} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_{Cs} = - 1.71\left( {21} \right) \cdot 10^{ - 4} \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_F = - 5.016\left( {15} \right) \cdot 10^{ - 4} \hfill \\ \left( {\xi _ \bot - \xi _\parallel } \right) = 14.7\left( {60} \right) \cdot 10^{ - 30} erg/Gau\beta ^2 \hfill \\ c_{cs} /h = 0.638\left( {20} \right)kHz \hfill \\ c_F /h = 14.94\left( 6 \right)kHz \hfill \\ d_T /h = 0.94\left( 4 \right)kHz \hfill \\ \left| {d_s /h} \right|< 5kHz \hfill \\ eqQ/h\left( {\upsilon = 0} \right) = 1238.3\left( 6 \right) kHz \hfill \\ eqQ/h\left( {\upsilon = 1} \right) = 1224\left( 5 \right) kHz \hfill \\ \end{gathered} $$  相似文献   

15.
The mathematical properties of the lattice Green function are investigated, where w=w 1+iw 2 lies in a complex plane which is cut from w=?1 to w=3, and {? 1,? 2,? 3} is a set of integers with ? 1+? 2+? 3 equal to an even integer. In particular, it is proved that G(2n,0,0;w), where n=0,1,2,…, is a solution of a fourth-order linear differential equation of the Fuchsian type with four regular singular points at w=?1,0,3 and ∞. It is also shown that G(2n,0,0;w) satisfies a five-term recurrence relation with respect to the integer variable n. The limiting function
$G^{-}(2n,0,0;w_1)\equiv\lim_{\epsilon\rightarrow0+}G(2n,0,0;w_1-\mathrm{i}\epsilon) =G_{\mathrm{R}}(2n,0,0;w_1)+\mathrm{i}G_{\mathrm {I}}(2n,0,0;w_1) ,\nonumber $
where w 1∈(?1,3), is evaluated exactly in terms of 2 F 1 hypergeometric functions and the special cases G ?(2n,0,0;0), G ?(2n,0,0;1) and G(2n,0,0;3) are analysed using singular value theory. More generally, it is demonstrated that G(? 1,? 2,? 3;w) can be written in the form where Open image in new window are rational functions of the variable ξ, K(k ?) and E(k ?) are complete elliptic integrals of the first and second kind, respectively, with
$k_{-}^2\equiv k_{-}^2(w)={1\over2}- {2\over w} \biggl(1+{1\over w} \biggr)^{-{3\over2}}- {1\over2} \biggl(1-{1\over w} \biggr ) \biggl(1+{1\over w} \biggr)^{-{3\over2}} \biggl(1-{3\over w} \biggr)^{1\over2}\nonumber $
and the parameter ξ is defined as
$\xi\equiv\xi(w)= \biggl(1+\sqrt{1-{3\over w}} \,\biggr)^{-1} \biggl(-1+\sqrt{1+{1\over w}} \,\biggr) .\nonumber $
This result is valid for all values of w which lie in the cut plane. The asymptotic behaviour of G ?(2n,0,0;w 1) and G(2n,0,0;w 1) as n→∞ is also determined. In the final section of the paper a new 2 F 1 product form for the anisotropic face-centred cubic lattice Green function is given.
  相似文献   

16.
A classification of bounded below supersingular perturbations à of a self-adjoint operator A ? 1 is suggested. In the A-scale of Hilbert spaces \(\mathcal{H}_{ - k} \sqsupset \mathcal{H} \sqsupset \mathcal{H}_k \) = Dom A k/2, k > 0, a parametrization of operators à in terms of bounded mappings S: \(\mathcal{H}_k \to \mathcal{H}_{ - k} \) such that ker S is dense in \(\mathcal{H}_{k/2} \) is obtained.  相似文献   

17.
We use the spin-rotation-invariant Green’s function method as well as thehigh-temperature expansion to discuss the thermodynamic properties of the frustratedspin-S J 1-J 2 Heisenbergmagnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighborbonds J 1<0 and antiferromagnetic next-nearest-neighbor bonds J 2 ≥ 0 andarbitrary spin S. We find that the transition point\hbox{$J_2^c$}J2cbetween the ferromagnetic ground state and theantiferromagnetic one is nearly independent of the spin S, i.e., it is very closeto the classical transition point\hbox{$J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|$}J2c,clas=23|J1|. At finite temperatures we focus on the parameterregime\hbox{$J_2<J_2^c$}J2<J2cwith a ferromagnetic ground-state. We calculate theCurie temperature T C (S, J 2)and derive an empirical formula describing the influence of the frustration parameterJ 2 and spin S on T C . We find that theCurie temperature monotonically decreases with increasing frustration J 2, where veryclose to\hbox{$J_2^{c,{\rm clas}}$}J2c,clasthe T C (J 2)-curveexhibits a fast decay which is well described by a logarithmic term\hbox{$1/\textrm{log}(\frac{2}{3}|J_1|-J_{2})$}1/log(23|J1|?J2). To characterize the magnetic ordering below and aboveT C , we calculate thespin-spin correlation functions ?S 0 S R ?, the spontaneous magnetization, the uniform static susceptibilityχ 0 as well as the correlation lengthξ.Moreover, we discuss the specific heat C V and the temperaturedependence of the excitation spectrum. As approaching the transition point\hbox{$J_2^c$}J2csome unusual features were found, such as negativespin-spin correlations at temperatures above T C even though theground state is ferromagnetic or an increase of the spin stiffness with growingtemperature.  相似文献   

18.
The experimental search limit on the Higgs boson mass points to a “golden region” in the Minimal Supersymmetric Standard Model parameter space in which the fine-tuning in the electroweak sector is minimized. One of the sbottoms is relatively light since its mass parameter is related to that of the stop. The decay products of the light sbottom typically include a W boson and a b jet. We studied the pair production of the light sbottoms at the Large Hadron Collider and examined its discovery potential via collider signature of 4 jets + 1 lepton + missing E T . Such channel differs from conventional sbottom searches of either \(\tilde{b}_{1} \rightarrow b \chi_{2}^{0} \rightarrow b \ell^{+}\ell^{-} \chi_{1}^{0}\) or \(\tilde{b}_{1} \rightarrow t \chi_{1}^{-}\) with reconstructed top quark. We analyzed the Standard Model backgrounds for this channel and developed a set of cuts to identify the signal and suppress the backgrounds. We showed that with 100 fb?1 integrated luminosity, a significance level of 5–6 σ could be reached for the light sbottom discovery at the LHC.  相似文献   

19.
Within the model of delocalized atoms, it is shown that the parameter δTg, which enters the glasstransition equation qτg = δTg and characterizes the temperature interval in which the structure of a liquid is frozen, is determined by the fluctuation volume fraction \({f_g} = {\left( {{{\Delta {V_e}} \mathord{\left/ {\vphantom {{\Delta {V_e}} V}} \right. \kern-\nulldelimiterspace} V}} \right)_{T = {T_g}}}\) frozen at the glass-transition temperature Tg and the temperature Tg itself. The parameter δTg is estimated by data on fg and Tg. The results obtained are in agreement with the values of δTg calculated by the Williams–Landel–Ferry (WLF) equation, as well as with the product qτg—the left-hand side of the glass-transition equation (q is the cooling rate of the melt, and τg is the structural relaxation time at the glass-transition temperature). Glasses of the same class with fg ≈ const exhibit a linear correlation between δTg and Tg. It is established that the currently used methods of Bartenev and Nemilov for calculating δTg yield overestimated values, which is associated with the assumption, made during deriving the calculation formulas, that the activation energy of the glass-transition process is constant. A generalized Bartenev equation is derived for the dependence of the glass-transition temperature on the cooling rate of the melt with regard to the temperature dependence of the activation energy of the glasstransition process. A modified version of the kinetic glass-transition criterion is proposed. A conception is developed that the fluctuation volume fraction f = ΔVe/V can be interpreted as an internal structural parameter analogous to the parameter ξ in the Mandelstam–Leontovich theory, and a conjecture is put forward that the delocalization of an active atom—its critical displacement from the equilibrium position—can be considered as one of possible variants of excitation of a particle in the Vol’kenshtein–Ptitsyn theory. The experimental data used in the study refer to a constant cooling rate of q = 0.05 K/s (3 K/min).  相似文献   

20.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号