首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let G be a connected graph in which almost all vertices have linear degrees and let \(\mathcal {T}\) be a uniform spanning tree of G. For any fixed rooted tree F of height r we compute the asymptotic density of vertices v for which the r-ball around v in \(\mathcal {T}\) is isomorphic to F. We deduce from this that if \(\{G_n\}\) is a sequence of such graphs converging to a graphon W, then the uniform spanning tree of \(G_n\) locally converges to a multi-type branching process defined in terms of W. As an application, we prove that in a graph with linear minimum degree, with high probability, the density of leaves in a uniform spanning tree is at least \(e^{-1}-\mathsf {o}(1)\), the density of vertices of degree 2 is at most \(e^{-1}+\mathsf {o}(1)\) and the density of vertices of degree \(k\geqslant 3\) is at most \({(k-2)^{k-2} \over (k-1)! e^{k-2}} + \mathsf {o}(1)\). These bounds are sharp.  相似文献   

2.
The new mesons X(3940) and X(4160) have been found by Belle Collaboration in the processes \(e^+e^-\rightarrow J/\psi D^{(*)}{\bar{D}}^{(*)}\). Considering X(3940) and X(4160) as \(\eta _c(3S)\) and \(\eta _c(4S)\) states, the two-body open charm OZI-allowed strong decay of \(\eta _c(3S)\) and \(\eta _c(4S)\) are studied by the improved Bethe–Salpeter method combined with the \(^3P_0\) model. The strong decay width of \(\eta _c(3S)\) is \(\Gamma _{\eta _c(3S)}=(33.5^{+18.4}_{-15.3})\) MeV, which is close to the result of X(3940); therefore, \(\eta _c(3S)\) is a good candidate of X(3940). The strong decay width of \(\eta _c(4S)\) is \(\Gamma _{\eta _c(4S)}=(69.9^{+22.4}_{-21.1})\) MeV, considering the errors of the results, it is close to the lower limit of X(4160). But the ratio of the decay width \(\frac{\Gamma (D{\bar{D}}^*)}{\Gamma (D^*{\bar{D}}^*)}\) of \(\eta _c(4S)\) is larger than the experimental data of X(4160). According to the above analysis, \(\eta _c(4S)\) is not the candidate of X(4160), and more investigations of X(4160) is needed.  相似文献   

3.
The higher spin Dirac operator \(\mathcal{Q}_{k,l}\) acting on functions taking values in an irreducible representation space for \(\mathfrak{so}(m)\) with highest weight \((k+\frac{1}{2},l+\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2})\), with k, l?∈?\(\mathbb{N}\) and \(k\geqslant l\), is constructed. The structure of the kernel space containing homogeneous polynomial solutions is then also studied.  相似文献   

4.
The \(B^{0}_{s}\to J/\psi f_{0}(980)\) decay offers an interesting experimental alternative to the well-known \(B^{0}_{s}\to J/\psi \phi\) channel for the search of CP-violating New-Physics contributions to \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing. As the hadronic structure of the f 0(980) has not yet been settled, we take a critical look at the implications for the relevant observables and address recent experimental data. It turns out that the effective lifetime of \(B^{0}_{s}\to J/\psi f_{0}(980)\) and its mixing-induced CP asymmetry S are quite robust with respect to hadronic effects and thereby allow us to search for a large CP-violating \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing phase ? s , which is tiny in the Standard Model. However, should small CP violation, i.e. in the range ?0.1?S?0, be found in \(B^{0}_{s}\to J/\psi f_{0}(980)\), it will be crucial to constrain hadronic corrections in order to distinguish possible New-Physics effects from the Standard Model. We point out that \(B^{0}_{d}\to J/\psi f_{0}(980)\), which has not yet been measured, is a key channel in this respect and discuss the physics potential of this decay.  相似文献   

5.
We investigate the gauge/gravity duality between the \(\mathcal{N} = 6\) mass-deformed ABJM theory with \(\hbox {U}_k(N)\times \hbox {U}_{-k}(N)\) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(2,1)\(\times \)SO(4)/\({\mathbb {Z}}_k\) \(\times \)SO(4)/\({\mathbb {Z}}_k\) isometry, in terms of a KK holography, which involves quadratic order field redefinitions. We establish the quadratic order KK mappings for various gauge invariant fields in order to obtain the canonical 4-dimensional gravity equations of motion and to reduce the LLM solutions to an asymptotically AdS\(_4\) gravity solutions. The non-linearity of the KK maps indicates that we can observe the true purpose of the non-linear KK holography of the LLM solutions. We read the vacuum expectation value of conformal dimension two operator from the asymptotically AdS\(_4\) gravity solutions. For the LLM solutions which are represented by square-shaped Young diagrams, we compare the vacuum expectation value obtained from the holographic procedure with the result obtained from the field theory, which is given by \(\langle \mathcal{O}^{(\Delta =2)}\rangle =\sqrt{k}N^{\frac{3}{2}}f_{(\Delta =2)}+\mathcal{O}(N)\), where \(f_{\Delta }\) is independent of N. Based on this result, we examine the gauge/gravity duality in the large N limit and finite k. We also show that the vacuum expectation values of the massive KK graviton modes are vanishing as expected by the supersymmetry.  相似文献   

6.
If \(\mathcal{F}\) is a set of subgraphs F of a finite graph E we define a graph-counting polynomial \(p_\mathcal{F}(z)=\sum _{F\in \mathcal{F}}z^{|F|}\) In the present note we consider oriented graphs and discuss some cases where \(\mathcal{F}\) consists of unbranched subgraphs E. We find several situations where something can be said about the location of the zeros of \(p_\mathcal{F}\).  相似文献   

7.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

8.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

9.
We study minimizers of the pseudo-relativistic Hartree functional \({\mathcal {E}}_{a}(u):=\Vert (-\varDelta +m^{2})^{1/4}u\Vert _{L^{2}}^{2}+\int _{{\mathbb {R}}^{3}}V(x)|u(x)|^{2}\mathrm{d}x-\frac{a}{2}\int _{{\mathbb {R}}^{3}}(\left| \cdot \right| ^{-1}\star |u|^{2})(x)|u(x)|^{2}\mathrm{d}x\) under the mass constraint \(\int _{{\mathbb {R}}^3}|u(x)|^2\mathrm{d}x=1\). Here \(m>0\) is the mass of particles and \(V\ge 0\) is an external potential. We prove that minimizers exist if and only if a satisfies \(0\le a<a^{*}\), and there is no minimizer if \(a\ge a^*\), where \(a^*\) is called the Chandrasekhar limit. When a approaches \(a^*\) from below, the blow-up behavior of minimizers is derived under some general external potentials V. Here we consider three cases of V: trapping potential, i.e. \(V\in L_{\mathrm{loc}}^{\infty }({\mathbb {R}}^3)\) satisfies \(\lim _{|x|\rightarrow \infty }V(x)=\infty \); periodic potential, i.e. \(V\in C({\mathbb {R}}^3)\) satisfies \(V(x+z)=V(x)\) for all \(z\in \mathbb {Z}^3\); and ring-shaped potential, e.g. \( V(x)=||x|-1|^p\) for some \(p>0\).  相似文献   

10.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

11.
We describe the self-adjoint realizations of the operator \(H:=-i\alpha \cdot \nabla + m\beta + \mathbb {V}(x)\), for \(m\in \mathbb {R}\), and \(\mathbb {V}(x)= {|}x{|}^{-1} ( \nu \mathbb {I}_4 +\mu \beta -i \lambda \alpha \cdot {x}/{{|}x{|}}\,\beta )\), for \(\nu ,\mu ,\lambda \in \mathbb {R}\). We characterize the self-adjointness in terms of the behavior of the functions of the domain in the origin, exploiting Hardy-type estimates and trace lemmas. Finally, we describe the distinguished extension.  相似文献   

12.
The charge exchange reaction \(\bar {\mathrm {p}} + \text {Ps} \rightarrow \mathrm {e}^{-} + \bar {\mathrm {H}} \), of interest for the future experiments (GBAR, AEGIS, ATRAP, ...) aiming to produce antihydrogen atoms, is investigated in the energy range between the \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 2)\) and \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 3)\) thresholds. An ab-initio method based on the solution of the Faddeev-Merkuriev equations is used. Special focus is put on the impact of the Feshbach resonances and the Gailitis-Damburg oscillations, appearing in the vicinity of the \(\bar {\mathrm {p}} +\text {Ps}(n = 2)\) threshold, on the \(\bar {\mathrm {H}}\) production cross section.  相似文献   

13.
We look into the newly observed \(\Omega (2012)\) state from the molecular perspective in which the resonance is generated from the \(\bar{K} \Xi ^*\), \(\eta \Omega \) and \(\bar{K} \Xi \) channels. We find that this picture provides a natural explanation of the properties of the \(\Omega (2012)\) state. We stress that the molecular nature of the resonance is revealed with a large coupling of the \(\Omega (2012)\) to the \(\bar{K} \Xi ^*\) channel, that can be observed in the \(\Omega (2012) \rightarrow \bar{K} \pi \Xi \) decay which is incorporated automatically in our chiral unitary approach via the use of the spectral function of \(\Xi ^*\) in the evaluation of the \(\bar{K} \Xi ^*\) loop function.  相似文献   

14.
The width of the \(\tau\rightarrow\bar{K}^{*0}(892)\pi^{-}\nu_\tau\) decay is calculated within the Nambu–Jona-Lasinio model taking into account four channels of the formation of the \(\tau\rightarrow\bar{K}^{*0}(892)\pi^{-}\) pair—the contact interaction and three channels with intermediate axial-vector, vector, and pseudoscalar mesons. Leading contributions arise from the contact interaction and axial-vector channel with an intermediate ground-state K1(1270) meson. Our theoretical estimate adequately reproduces the measured \(\tau\rightarrow\bar{K}^{*0}(892)\pi^{-}\nu_\tau\) decay width.  相似文献   

15.
The main purpose of this paper is to introduce and establish basic results of a natural extension of the classical Boolean percolation model (also known as the Gilbert disc model). We replace the balls of that model by a positive non-increasing attenuation function \(l:(0,\infty ) \rightarrow [0,\infty )\) to create the random field \(\Psi (y)=\sum _{x\in \eta }l(|x-y|),\) where \(\eta \) is a homogeneous Poisson process in \({\mathbb {R}}^d.\) The field \(\Psi \) is then a random potential field with infinite range dependencies whenever the support of the function l is unbounded. In particular, we study the level sets \(\Psi _{\ge h}(y)\) containing the points \(y\in {\mathbb {R}}^d\) such that \(\Psi (y)\ge h.\) In the case where l has unbounded support, we give, for any \(d\ge 2,\) a necessary and sufficient condition on l for \(\Psi _{\ge h}(y)\) to have a percolative phase transition as a function of h. We also prove that when l is continuous then so is \(\Psi \) almost surely. Moreover, in this case and for \(d=2,\) we prove uniqueness of the infinite component of \(\Psi _{\ge h}\) when such exists, and we also show that the so-called percolation function is continuous below the critical value \(h_c\).  相似文献   

16.
We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of \(\mathbf{B}_c\rightarrow \mathbf{B}_n M\), with \(\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)\) and \(\mathbf{B}_n(M)\) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of \({\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})\) and \(R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)\)/\({\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)\). In addition, we obtain that \({\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}\), \({\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}\) and \({\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}\), which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.  相似文献   

17.
Let \(\mathcal {M}\) be a von Neumann algebra of operators on a Hilbert space \(\mathcal {H}\), τ be a faithful normal semifinite trace on \(\mathcal {M}\). We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from \(\mathcal {M}\). We apply our results to symmetric spaces on \((\mathcal {M}, \tau )\). The results are new even for the *-algebra \(\mathcal {B}(\mathcal {H})\) of all linear bounded operators on \(\mathcal {H}\) endowed with the canonical trace τ = tr.  相似文献   

18.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

19.
By including the interference effect between the QCD and the QED diagrams, we carry out a complete analysis on the exclusive productions of \(e^+e^- \rightarrow J/\psi +\chi _{cJ}\) (\(J=0,1,2\)) at the B factories with \(\sqrt{s}=10.6\) GeV at the next-to-leading-order (NLO) level in \(\alpha _s\), within the nonrelativistic QCD framework. It is found that the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms that represent the tree-level interference are comparable with the usual NLO QCD corrections, especially for the \(\chi _{c1}\) and \(\chi _{c2}\) cases. To explore the effect of the higher-order terms, namely \({\mathcal {O}} (\alpha ^3\alpha _s^2)\), we perform the QCD corrections to these \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms for the first time, which are found to be able to significantly influence the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order results. In particular, in the case of \(\chi _{c1}\) and \(\chi _{c2}\), the newly calculated \({\mathcal {O}} (\alpha ^3\alpha _s^2)\)-order terms can to a large extent counteract the \({\mathcal {O}} (\alpha ^3\alpha _s)\) contributions, evidently indicating the indispensability of the corrections. In addition, we find that, as the collision energy rises, the percentage of the interference effect in the total cross section will increase rapidly, especially for the \(\chi _{c1}\) case.  相似文献   

20.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号