首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Solid-phase microextraction (SPME) is a solvent-free sample preparation technique using a thin coating attached to the surface of a fused silica-fiber as the extraction medium, which has been successfully applied to the analysis of a wide variety of compounds by coupling to gas chromatography (GC). In recent years, in-tube SPME using GC capillary column as the extraction medium has also been developed and coupled with liquid chromatography (LC) for the preconcentration of nonvolatile compounds. In this study, an on-line interface between the fiber-in-tube SPME and capillary electrophoresis (CE) has been developed, and the preconcentration and separation of four tricyclic antidepressant (TCA) drugs, amitriptyline, imipramine, nortriptyline, and desipramine, were performed with the hyphenated system. Under the optimized condition, a better extraction performance than conventional in-tube SPME was obtained, even the length of the extraction medium was much shorter. The results clearly indicated that the fiber was working effectively as an extraction medium. For the separation of these four TCAs, capillary electrophoretic separation with beta-cyclodextrin as the buffer additive has been employed and the application of the developed system to the analysis of complex sample mixtures in a biological matrix is also demonstrated.  相似文献   

2.
In-tube solid-phase microextraction (SPME) is an automated version of SPME that can be easily coupled to a conventional HPLC autosampler for on-line sample preparation, separation and quantitation. It has been termed "in-tube" SPME because the extraction phase is coated inside a section of fused-silica tubing rather than coated on the surface of a fused-silica rod as in the conventional syringe-like SPME device. The new in-tube SPME technique has been demonstrated as a very efficient extraction method for the analysis of polar and thermally labile analytes. The in-tube SPME-HPLC method used with the FAMOS autosampler from LC Packings was developed for detecting polar carbamate pesticides in clean water samples. The main parameters relating to the extraction and desorption processes of in-tube SPME (selection of coatings, aspirate/dispense steps, selection of the desorption solvents, and the efficiency of desorption solvent, etc.) were investigated. The method was evaluated according to the reproducibility, linear range and limit of detection. This method is simple, effective, reproducible and sensitive. The relative standard deviation for all the carbamates investigated was between 1.7 and 5.3%. The method showed good linearity between 5 and 10000 microg/l with correlation coefficients between 0.9824 and 0.9995. For the carbamates studied, the limits of detection observed are lower than or similar to that of US Environmental Protection Agency or National Pesticide Survey methods. Detection of carbaryl present in clean water samples at 1 microg/l is possible.  相似文献   

3.
Applications of solid-phase microextraction in food analysis   总被引:21,自引:0,他引:21  
Food analysis is important for the evaluation of the nutritional value and quality of fresh and processed products, and for monitoring food additives and other toxic contaminants. Sample preparation, such as extraction, concentration and isolation of analytes, greatly influences the reliable and accurate analysis of food. Solid-phase microextraction (SPME) is a new sample preparation technique using a fused-silica fiber that is coated on the outside with an appropriate stationary phase. Analyte in the sample is directly extracted to the fiber coating. The SPME technique can be used routinely in combination with gas chromatography (GC), GC–mass spectrometry (GC–MS), high-performance liquid chromatography (HPLC) or LC–MS. Furthermore, another SPME technique known as in-tube SPME has also been developed for combination with LC or LC–MS using an open tubular fused-silica capillary column as an SPME device instead of SPME fiber. These methods using SPME techniques save preparation time, solvent purchase and disposal costs, and can improve the detection limits. This review summarizes the SPME techniques for coupling with various analytical instruments and the applications of these techniques to food analysis.  相似文献   

4.
Wu J  Lord H  Pawliszyn J 《Talanta》2001,54(4):655-672
A simple and sensitive method for the determination of amphetamine, methamphetamine and their methylenedioxy derivatives in urine and hair samples was developed by coupling automated in-tube solid phase microextraction (SPME) to high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ES-MS). To achieve optimum performance, the conditions for both the in-tube SPME and the ES-MS detection were investigated. ES-MS detection conditions were studied by flow injection analysis (FIA) with direct liquid injection. In-tube SPME conditions were optimized by selecting the appropriate extraction parameters, including capillary stationary phases and sample pH. For the compounds studied, a custom-made polypyrrole (PPY) coated capillary showed superior extraction efficiency as compared to commercial capillaries. Therefore, the PPY coated capillary was selected for in-tube SPME in this study. The calibration curves of stimulants were linear in the range from 0.1 to 100 ng ml(-1) with detection limits (S/N=3) of 8-56 ng l(-1). This method was successfully applied to the analysis of the stimulants in spiked human urine and hair samples.  相似文献   

5.
In-tube solid-phase microextraction (in-tube SPME or IT-SPME) is a sample preparation technique which has demonstrated over time its ability to couple with liquid chromatography (LC), as well as its advantages as a miniaturized technique. However, the in-tube SPME perspectives in the forthcoming years depend on solutions that can be brought to the environmental, industrial, food and biomedical analysis. The purpose of this scoping review is to examine the strengths and weaknesses of this technique during the period 2009 to 2015 in order to identify research gaps that should be addressed in the future, as well as the tendencies that are meant to strengthen the technique.  相似文献   

6.
A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for determination of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in human plasma has been developed, validated, and further applied to pharmacokinetic study in pregnant women with gestational diabetes mellitus (GDM) subjected to epidural anesthesia. Important factors in the optimization of in-tube SPME performance are discussed, including the draw/eject sample volume, draw/eject cycle number, draw/eject flow rate, sample pH, and influence of plasma proteins. The limits of quantification of the in-tube SPME/LC method were 50 ng/mL for both metabolite and lidocaine. The interday and intraday precision had coefficients of variation lower than 8%, and accuracy ranged from 95 to 117%. The response of the in-tube SPME/LC method for analytes was linear over a dynamic range from 50 to 5000 ng/mL, with correlation coefficients higher than 0.9976. The developed in-tube SPME/LC method was successfully used to analyze lidocaine and its metabolite in plasma samples from pregnant women with GDM subjected to epidural anesthesia for pharmacokinetic study.  相似文献   

7.
In-tube solid-phase microextraction (SPME) has successfully been coupled to capillary LC, and further an automated in-tube SPME system has been developed using a commercially available HPLC auto-sampler. However, an open tubular capillary column with a thick film of polymer (stationary phase) is unfavorable because the ratio of the surface area of coating layer contacted with sample solution to the volume of the capillary column is insufficient for mass transfer. A highly efficient SPME column is. therefore, required. We introduced a C18-bonded monolithic capillary column that was used for in-tube SPME. The column consisted of continuous porous silica having a double-pore structure. Both the through-pore and the meso-pore were optimized for in-tube SPME, and the optimized capillary column was connected to an HPLC injection valve for characterization. The results demonstrated that the pre-concentration efficiency is excellent compared with the conventional in-tube SPME. The novel method for both introduction and concentration of the samples was effective. satisfactory and suitable for use in the SPME medium.  相似文献   

8.
Sample preparation, such as extraction, concentration, and isolation of analytes, greatly influences their reliable and accurate analysis. In-tube solid-phase microextraction (SPME) is a new effective sample preparation technique using an open tubular fused-silica capillary column as an extraction device. Organic compounds in aqueous samples are directly extracted and concentrated into the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and they can be directly transferred to the liquid chromatographic column. In-tube SPME is an ideal sample preparation technique because it is fast to operate, easy to automate, solvent-free, and inexpensive. On-line in-tube SPME-performed continuous extraction, concentration, desorption, and injection using an autosampler, is usually used in combination with high performance liquid chromatography and liquid chromatography-mass spectrometry. This technique has successfully been applied to the determination of various compounds such as pesticides, drugs, environmental pollutants, and food contaminants. In this review, an overview of the development of in-tube SPME technique and its applications to environmental, clinical, forensic, and food analyses are described.  相似文献   

9.
A simple and sensitive method for the determination of polar pesticides in water and wine samples was developed by coupling automated in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). To achieve optimum performance, the conditions for both the in-tube SPME and the ESI-MS detection were investigated. In-tube SPME conditions were optimized by selecting the appropriate extraction parameters, especially the stationary phases used for SPME. For the compounds studied, a custom-made polypyrrole (PPY)-coated capillary showed superior extraction efficiency as compared to several commercial capillaries tested, and therefore, it was selected for in-tube SPME. The influence of the ethanol content on the performance of in-tube SPME was also investigated. It was found that the amount of pesticides extracted decreased with the increase of ethanol content in the solutions. The ESI-MS detection conditions were optimized as follows: nebulizer gas, N2 (30 p.s.i.; 1 p.s.i.=6894.76 Pa); drying gas, N2 (10 l/min, 350 degrees C); capillary voltage, 4500 V; ionization mode, positive; mass scan range, 50-350 amu; fragmentor voltage, variable depending on the ions selected. Due to the high extraction efficiency of the PPY coating and the high sensitive mass detection, the detection limits (S/N = 3) of this method for the compounds studied are in the range of 0.01 to 1.2 ng/ml, which are more than one order of magnitude lower than those of the previous in-tube SPME-HPLC-UV method. A linear relationship was obtained for each analyte in the concentration range of 0.5 to 200 ng/ml with MS detection. This method was applied to the analysis of phenylurea and carbamate pesticides in spiked water and wine samples.  相似文献   

10.
Miniaturized solid-phase extraction (SPE) has been developed and successfully employed for the determination of organic species in water samples by liquid chromatography (LC). The method is based on the concept of a microscale extraction technique using a fused-silica capillary column for gas chromatography (GC), so-called in-tube solid-phase microextraction (SPME). The extraction conditions, such as the extraction time and flow-rate for the extraction and desorption process, were investigated as well as the effect of the internal structure of the extraction capillary on the efficiency. By inserting a stainless steel wire into the extraction capillary to reduce the internal volume of the capillary with the same surface area of the coating, an improved extraction and pre-concentration effects were obtained. Further pre-concentration was accomplished by the extraction device with a novel fiber-in-tube configuration. The direct coupling of the extraction method with a LC system has made it possible to determine low levels of phthalates in water samples without high consumption of organic solvents. The system developed must have potential applications for the analysis of environmental and biological samples in aqueous sample matrices.  相似文献   

11.
The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN α(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN α(2a) analyses in plasma sample were carried out within 25min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0MIUmL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN α(2a) in plasma samples for therapeutic drug monitoring.  相似文献   

12.
An automated on-line method for the determination of the isoflavones, daidzein and genistein, was developed using in-tube solid-phase microextraction coupled to high-performance liquid chromatography (in-tube SPME-HPLC). In-tube SPME is a new extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. Daidzein, genistein and their glucosides tested in this study were clearly separated within 8 min by HPLC using an XDB-C8 column with diode array detection. In order to optimize the extraction of these compounds, several in-tube SPME parameters were examined. The glucosides daidzin and genistin were analyzed as aglycones after hydrolysis because the glucosides were not concentrated by in-tube SPME. The optimum extraction conditions for daidzein and genistein were obtained with 20 draw/eject cycles of 40 microl of sample using a Supel-Q porous layer open tubular capillary column. The extracted compounds were easily desorbed from the capillary by mobile phase flow, and carryover was not observed. Using the in-tube SPME-HPLC method, the calibration curves of these compounds were linear in the range 5-200 ng/ml, with a correlation coefficient above 0.9999 (n = 18), and the detection limits (S/N = 3) were 0.4-0.5 ng/ml. This method was successfully applied to the analysis of soybean foods without interference peaks. The recoveries of aglycones and glucosides spiked into food samples were above 97%.  相似文献   

13.
Solid-phase microextraction (SPME) techniques are equally applicable to both volatile and non-volatile analytes, but the progress in applications to gas-phase separations has outpaced that of liquid-phase separations. The interfacing of SPME to gas chromatographic equipment has been straight-forward, requiring little modification of existing equipment. The requirement of solvent desorption for non-volatile or thermally labile analytes has, however, proven challenging for interfacing SPME with liquid-phase separations. Numerous options to achieve this have been described in the literature over the past decade, with applications in several different areas of analysis. To date, no single strategy or interface device design has proven optimal. During method development analysts must select the most appropriate interfacing technique among the options available. Out of these options three general strategies have emerged: (1) use of a manual injection interface tee; (2) in-tube SPME; and (3) off-line desorption followed by conventional liquid injection. In addition, there has been interest in coupling SPME directly to electrospray ionisation and matrix-assisted laser desorption ionisation (MALDI) for mass spectrometry. Several examples of each of these strategies are reviewed here, and an overview of their use and application is presented.  相似文献   

14.
Miniaturized sample preparation technique for complex sample matrices has been developed with a polymer-coated fibrous extraction medium. By using extraction cartridge packed longitudinally with polymer-coated fiber into a short PEEK capillary, the extraction efficiency was significantly improved. The extraction cartridge was installed in an injection valve as a sample loop and the on-line coupling with microcolumn liquid chromatography (micro-LC) was demonstrated. This on-line coupled sample preparation/separation system showed a good validity for the analysis of phthalates and tricyclic antidepressant drugs in typical water samples. The lowest limits of quantification for several phthalates and tricyclic antidepressants (TCA) drugs were less than 1 ng mL?1. The effect of polymeric coating on the filament surface on the extraction power was also investigated.  相似文献   

15.
王欣  何坚刚  罗琪  刘震 《色谱》2020,38(1):137-142
自动化联用分析技术对于降低人力强度、提高效率和保证数据重现性等具有重要意义。硼亲和固相微萃取(BA-SPME)是近十年出现的用于富集顺式二羟基化合物的独特工具,但BA-SPME与高效液相色谱(HPLC)的自动化在线联用还未见报道。该文报道了一种新颖的管内BA-SPME-HPLC全自动在线联用方法,用于分析茶饮料中的顺式二羟基化合物。该自动化在线联用方法利用自动进样器通过六通阀的切换实现流路连接。制备了管内BA-SPME毛细管,考察了涂层柱的柱容量,并对其形貌进行了表征,考察并优化了影响实际样品分离效果的因素。最后,利用该联用方法对3种不同品牌的茶饮料进行了分析,并对沏茶温度对茶水中顺式二羟基化合物含量的影响进行了评价。  相似文献   

16.
This paper compares the advantages and disadvantages of two different configurations for the extraction of triazines from water samples: (1) on-fibre solid-phase microextraction (SPME) coupled to conventional liquid chromatography (LC); and (2) in-tube SPME coupled to capillary LC. In-tube SPME has been effected either with a packed column or with an open capillary column. A critical evaluation of the main parameters affecting the performance of each method has been carried out in order to select the most suitable approach according to the requirements of the analysis. In the on-fibre SPME configuration the fibre coating was polydimethylsiloxane (PDMS)-divinylbenzene (DVB). The limits of detection (LODs) obtained with this approach under the optimized extraction and desorption conditions were between 25 and 125 microg/L. The in-tube SPME approach with a C18 packed column (35 mm x 0.5 mm I.D., 5 microm particle size) connected to a switching micro-valve provided the best sensitivity; under such configuration the LODs were between 0.025 and 0.5 microg/L. The in-tube SPME approach with an open capillary column coated with PDMS (30 cm x 0.25 mm I.D., 0.25 microm of thickness coating) connected to the injection valve provided LODs between 0.1 and 0.5 microg/L. In all configurations UV detection at 230 nm was used. Atrazine, simazine, propazine, ametryn, prometryn and terbutryn were selected as model compounds.  相似文献   

17.
The inherent selectivity of the antibody was combined with in-tube solid-phase microextraction by immobilization of the antibody into the fused silica capillary. A sensitive, selective, and reproducible immunoaffinity in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry (in-tube SPME/LC-MS) method was developed, and validated for fluoxetine analysis in human serum. Important factors in the optimization of in-tube SPME variables, as well as the evaluation of the immunoaffinity capillary capacity are discussed. The in-tube SPME/LC-MS method presented a limit of quantitation of 5.00 ng/mL, and precision intra-assays with RSDs lower than 5%. The response of the in-tube SPME/LC-MS method for fluoxetine was linear over a dynamic range from 5.00 to 50.00 ng/mL, with correlation coefficients better than 0.998. Based on analytical validation it was demonstrated that in-tube SPME/LC-MS method offers high sensitivity, selectivity, and enough reproducibility to permit the quantification of fluoxetine in human serum at therapeutic levels. Thus, the proposed SPME/LC method can be useful tool to determine fluoxetine serum concentrations in patients receiving therapeutic dosages.  相似文献   

18.
Partition coefficients of benzene, toluene, ethylbenzene and xylenes (BTEX), between crosslinked polydimethylsiloxane and water, were determined at room temperature by capillary extraction (a form of in-tube solid-phase microextraction, SPME) coupled to open tubular gas chromatography (in-tube SPME-high-resolution GC). A series of 7-9 repetitive extractions, performed on a 1-ml volume of diluted aqueous BTEX sample by the double-syringe squeeze method, gave exponential regression curves which fit very well with those predicted by partition theory. From the equations of the curves of relative FID response vs. extraction number, experimental Kd were easily calculated and the results compared with literature values. The whole measurement requires about 1 h from the start of the experiment to the final calculation of all BTEX partition coefficients. In-tube SPME resulted in a fast, clean, efficient, and cheaper alternative than the classic 1-cm, externally coated, SPME fiber-holder technique.  相似文献   

19.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

20.
The constituents in synthetic alkylbenzene samples were analyzed by a comprehensive capillary liquid chromatography (micro-LC) x capillary gas chromatography (CGC). The micro-LC separates the mixture into aliphatic compounds, monosubstituted alkylbenzenes, multisubstituted alkylbenzenes and binuclear aromatic compounds. Each fraction from a single micro-LC injection is stored in turn in a multiloop interface, and then transferred online into CGC sequentially with large volume in-column splitless injection technique for detailed analysis. No sample discrimination was found with this coupling and injection technique. Both the micro-LC column dimension and transfer speed of fraction from interface to CGC were optimized. Quantitative results and the carbon number distribution of each chemical class are obtained by using the comprehensive micro-LC x CGC with flame ionization detection. The reproducibility of peak area is better than 2% RSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号