首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

2.
硅胶色谱柱的亲水作用保留机理及其影响因素   总被引:1,自引:0,他引:1  
李瑞萍  袁琴  黄应平 《色谱》2014,32(7):675-681
亲水作用色谱(HILIC)是替代反相色谱(RPLC)分离强极性及亲水性化合物的另一色谱模式,其分离机理与RPLC有很大不同,具有和RPLC互补的选择性。在HILIC模式中,采用正相色谱(NPLC)中的极性固定相及含高浓度有机溶剂(通常为乙腈)的水溶液为流动相。硅胶是开发最早、研究最为深入及应用最为广泛的HILIC固定相,本文介绍了硅胶色谱柱的HILIC保留机理,详细概述了操作条件如硅胶柱类型、流动相组成及柱温对HILIC分离的影响,并对硅胶填料色谱柱的HILIC模式的发展方向与应用前景进行了展望。  相似文献   

3.
More and more polar stationary phases have become available for the separation of small polar compounds in the past decade as hydrophilic interaction chromatography (HILIC) continues to find applications in new fields (e.g., metabolomics and proteomics). Bare silica phases remain popular, especially in the bio-analytical area. A wide range of functional groups (e.g., amino, amide, diol, sulfobetaine, and triazole) have been employed as polar stationary phases for HILIC separation. This review provides a survey of the popular stationary phases commercially available and discusses the retention and selectivity characteristics of the polar stationary phases in HILIC. The purpose of the review is not to provide a comprehensive overview of literature reports, but rather focuses on findings that demonstrate retention and selectivity of the polar stationary phases in HILIC.  相似文献   

4.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

5.
Separation efficiencies in hydrophilic interaction chromatography   总被引:2,自引:0,他引:2  
Hydrophilic interaction chromatography (HILIC) is important for the separation of highly polar substances including biologically active compounds, such as pharmaceutical drugs, neurotransmitters, nucleosides, nucleotides, amino acids, peptides, proteins, oligosaccharides, carbohydrates, etc. In the HILIC mode separation, aqueous organic solvents are used as mobile phases on more polar stationary phases that consist of bare silica, and silica phases modified with amino, amide, zwitterionic functional group, polyols including saccharides and other polar groups. This review discusses the column efficiency of HILIC materials in relation to solute and stationary phase structures, as well as comparisons between particle-packed and monolithic columns. In addition, a literature review consisting of 2006-2007 data is included, as a follow up to the excellent review by Hemstr?m and Irgum.  相似文献   

6.
成晓东  李云萍  贺银菊 《色谱》2019,37(7):683-691
将不同比例的氨基和巯基的硅烷偶联剂键合到硅胶表面,再利用巯基与乙烯基膦酸之间的点击化学反应将膦酸基团引入到硅胶表面,制备了一种可调节正负离子比例的两性亲水色谱固定相。通过测定固定相中C、H、N、P元素的含量,证明了氨基与膦酸基团已成功键合到固定相的表面,同时通过N元素与P元素的质量分数确定固定相表面氨基与膦酸基团的比例。制备了3种不同电荷比例的氨基膦酸固定相,将其作为亲水模式下的固定相填料填装在150 mm×4.6 mm不锈钢色谱柱中。以一系列经典的极性小分子作为探针,研究了流动相中乙腈含量、缓冲盐pH值及缓冲盐浓度等因素对探针分子在3种色谱柱上的保留的影响,结果表明,分析物在固定相上是多重保留机理。最后通过比较核苷、水溶性维生素、碱性化合物、苯甲酸这几类标准物质在3种色谱柱上的保留行为来对比3种不同电荷比例的固定相的分离选择性与色谱性能。结果表明,对于不同的分析物,3种固定相表现出完全不同的分离选择性和色谱行为。可以根据分析物的特征选取不同电荷比例的固定相,表明此种固定相在极性化合物的分离上具有良好的应用前景。  相似文献   

7.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

8.
A stationary phase composed of silica-bonded sulfonated cyclofructan 6 (SCF6) was synthesized and evaluated for hydrophilic interaction chromatography (HILIC). The separation of a large variety of polar compounds was evaluated on different versions of the stationary phase and compared with the same separations obtained with commercially available HILIC columns. The new columns successfully separate polar and hydrophilic compounds including β blockers, xanthines, salicylic acid related compounds, nucleic acid bases, nucleosides, maltooligosaccharides, water soluble vitamins and amino acids. The separation conditions were optimized by changing the composition and the pH of the mobile phase. The dependence of analyte retention on temperature was studied using van't Hoff plots. The newly synthesized stationary phase showed broad applicability for HILIC mode separations.  相似文献   

9.
Two polysaccharide stationary phases have been newly suggested for application in hydrophilic interaction chromatography (HILIC). Both columns (amylose‐silica, 250 × 4.6 mm, 5 μm and cellulose‐silica, 250 × 4.6 mm, 5 μm) demonstrated a satisfactory retention of polar compounds. The influence of the mobile‐phase composition (acetonitrile content, pH, salt concentration) on the retention was in agreement with the HILIC concept. The phases showed a very similar behavior, typical efficiency of about 50 000 plates/m, cellulose retained test compounds somewhat more strongly. Under the experimental conditions, electrostatic (non‐HILIC‐type) interactions due to the dissociation of silanol groups on the silica surface did not influence the retention, noticeably. The applicability of polysaccharide stationary phases for the chromatography of polar compounds was proven by the separation of mixtures of sugars (fructose, glucose, saccharose, maltose, trehalose) or vitamins (nicotinamide, pyridoxine, riboflavin, thiamine, nicotinic acid, ascorbic acid).  相似文献   

10.
This paper presents a systematic study of the retention behavior of a model bisdioxopiperazine drug, dexrazoxane (DEX) and its three polar metabolites (two single open-ring intermediates-B and C and an EDTA-like active compound ADR-925) on different stationary phases intended for hydrophilic interaction liquid chromatography (HILIC). The main aim was to estimate advantages and limitations of HILIC in the simultaneous analysis of a moderately lipophilic parent drug and its highly polar metabolites, including positional isomers, under MS compatible conditions. The study involved two bare silica columns (Ascentic Express HILIC, Atlantis HILIC) and two stationary phases with distinct zwitterionic properties (Obelisc N and ZIC HILIC). The chromatographic conditions (mobile phase strength and pH, column temperature) were systematically modified to assess their impact on retention and separation of the studied compounds. It was found that the bare silica phases were unable to separate the positional isomers (intermediates B and C), whereas both columns with zwitterionic properties (Obelisc N and ZIC HILIC) were able to separate these structurally very similar compounds. However, only ZIC HILIC phase allowed appropriate separation of DEX and all its metabolites to a base line within a single run. A mobile phase composed of a mixture of ammonium formate (0.5 mM) and acetonitrile (25:75, v/v) was suggested as optimal for the simultaneous analysis of DEX and its metabolites on ZIC HILIC. Thereafter, HILIC-LC-MS analysis of DEX and all its metabolites was performed for the first time to obtain basic data about the applicability of the suggested chromatographic conditions. Hence, this study demonstrates that HILIC could be a viable solution for the challenging analysis of moderately polar parent drug along with its highly polar metabolites including the ability to separate structurally very similar compounds, such as positional isomers.  相似文献   

11.
Maillard reaction of glucose with amino acids and peptides has become a very important experimental model in the food flavor and pharmaceutical industries for better understanding the mechanism of food flavor generation and drug stability. Because of the amino acid and sugar functional groups present in their structures, most of the reaction components formed during the initial stages of Maillard reaction as well as the substrates are relatively polar. These compounds are poorly retained on a conventional reversed phase column. While polar stationary phases like HILIC column do provide better retention for these polar components, method selectivity could still be a challenge due to the structural similarity between these analytes. In this report, parameters such as pH, mobile phase composition and temperature were investigated using different brands of bare silica columns in order to separate glycine (G), diglycine (DG), triglycine (TG), and the corresponding Amadori compounds of glucose-glycine (GG), glucose-diglycine (GDG) and glucose-triglycine (GTG). An excellent separation for glycine, glycine peptides and their Amadori compounds was obtained on a bare silica column at an elevated temperature.  相似文献   

12.
Liu Y  Du Q  Yang B  Zhang F  Chu C  Liang X 《The Analyst》2012,137(7):1624-1628
A silica based amino stationary phase was prepared by immobilization of propargylamine on azide-silica via click chemistry. This readily prepared click amino stationary phase demonstrated good selectivity in separation of common inorganic anions under ion chromatography (IC) mode, and the triazole ring in combination with free amino group was observed to play a major role for separation of the anions examined. On the other hand, the stationary phase also showed good hydrophilic interaction liquid chromatography (HILIC) properties in the separation of polar compounds including nucleosides, organic acids and bases. The retention mechanism was found to match well the typical HILIC retention.  相似文献   

13.
用天  吴凡  肖红斌  万伯顺 《色谱》2015,33(9):910-916
利用-NCO和-OH的加成反应,通过简单的两步反应将木糖醇和麦芽糖醇成功地键合于硅胶表面,制备了两种新型糖醇类亲水作用色谱固定相。流动相中乙腈含量对保留的影响曲线表明,这两种糖醇固定相具有典型的亲水作用色谱固定相性质,对极性和亲水性化合物有很强的保留作用。利用这两种固定相成功分离了水溶性维生素、水杨酸及其类似物、碱基及其相应的核苷和淫羊藿苷类似物等模型混合物,同时糖醇固定相展现了新颖的选择性,特别是相对于线形的木糖醇键合固定相,非线形的麦芽糖醇键合固定相表现出了对糖基的独特保留能力。此外,缓冲盐的pH和浓度对保留的影响表明静电作用在这两种糖醇固定相的保留机理中也发挥着一定的作用。本文所发展的糖醇类固定相具有良好的分离性能,有望在亲水作用色谱分离领域发挥潜在的应用价值。  相似文献   

14.
New stationary phases for hydrophilic interaction liquid chromatography (HILIC) were synthesized by covalently attaching native cyclofructan 6 (CF6) to silica gel. The chromatographic characteristics of the new stationary phases were evaluated and compared to three different types of commercial HILIC columns. The CF6 columns produced considerably different retention and selectivity patterns for various classes of polar analytes, including nucleic acid compounds, xanthines, β-blockers, salicylic acid and its derivatives, and maltooligosaccharides. Univariate optimization approaches were examined including organic modifier (acetonitrile) contents and buffer pH and salt concentration. The thermodynamic characteristic of the CF6 stationary phase was investigated by considering the column temperature effect on retention and utilizing van't Hoff plots. CF6 based stationary phases appear to have exceptionally broad applicability for HILIC mode separations.  相似文献   

15.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

16.
Sta&#;kov&#;  Magda  Jandera  Pavel 《Chromatographia》2016,79(11):657-666

In-house prepared zwitterionic polymethacrylate micro-columns using in situ polymerization of N,N-dimethyl-N-metacryloxyethyl-N-(3-sulfopropyl) ammonium betaine (MEDSA) functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) cross-linker provided excellent stability and reproducibility of preparation and separation efficiency of 60,000–70,000 theoretical plates m−1 for small molecules under isocratic conditions. The column showed a dual retention mechanism, reversed-phase (RP) in highly aqueous mobile phases and aqueous normal-phase (HILIC) in acetonitrile-rich mobile phases. This property can be used to obtain complementary separation and combined information on the sample from repeated injections of a sample on a single column, in different mobile phases characteristic for the HILIC and for the RP modes, which is in fact a form of offline two-dimensional chromatography on a single column. The dual retention mechanism has been observed with a variety of columns, however, often with impractically narrow retention range in one of the two modes. To take full advantage from the combined single-column RP–HILIC experiments, the column should provide a sufficiently broad mobile phase interval both in the RP and in the HILIC mode. The BIGDMA-MEDSA micro-columns proved suitable earlier for the combined RP–HILIC separations of some phenolic compounds and flavonoids. In the present work, we investigated the effects of the mobile phase composition on the retention of a variety of polar compounds over full retention range of buffered aqueous acetonitrile mobile phases, to find potentially useful HILIC and RP retention ranges for barbiturates, sulfonamides, nucleosides and nucleic bases. In the HILIC mode, proton donor–acceptor interactions show a major effect on retention and selectivity of separation, whereas the size of the non-polar hydrocarbon part of the sample molecule is the most important factor in the water-rich mobile phases. The sample structure strongly affects the composition of aqueous–organic mobile phases at which the transition between the two retention modes occurs. Of the investigated sample types, barbiturates show better separation under reversed-phase conditions, whereas nucleosides and nucleic bases in the HILIC mode. Aromatic carboxylic acids and sulfonamides can be separated either in the reversed phase or under HILIC conditions, the two separation modes showing complementary selectivity of separation.

  相似文献   

17.
成晓东  张铮 《应用化学》2019,36(6):726-732
利用异氰酸丙基三乙氧基硅烷与L-异亮氨酸反应合成了一种新型的硅烷偶联剂,并进一步将其与硅胶反应制得键合有L-异亮氨酸的亲水色谱固定相。 通过核磁共振氢谱表明亮氨酸功能化硅烷偶联剂的成功合成、元素分析表征证明亮氨酸已成功键合到硅胶表面。 将其作为亲水模式下的固定相填料填装在150 mm×4.6 mm不锈钢色谱柱中,以一系列经典的极性小分子作为探针,考察了这些探针分子在固定相上的色谱行为。 极性化合物的保留时间随着流动相中有机溶剂含量提高而逐渐增大,表现出典型的亲水保留特征。 进一步研究了流动相中乙腈含量、缓冲盐pH值及缓冲盐浓度等因素对分析物在固定相上的保留的影响。 在优化了相关参数后,将固定相应用于碱性化合物、水溶性维生素以及核苷类极性物质的分离当中。 在等度洗脱下,5种碱性化合物、6种水溶性维生素和8种核苷类物质分别在8、18及25 min内被成功分离。 分离结果表明了合成的L-异亮氨酸键合亲水色谱固定相具有较好的色谱性能,在极性化合物的分离上具有良好的应用前景。  相似文献   

18.
A native β-cyclodextrin (β-CD) stationary phase was prepared by covalently bonding β-CD on silica particles via Huisgen [3 + 2] dipolar cycloaddition between the organic azide and terminal alkyne, the so-called Click chemistry. The resulting β-CD bonded silica (Click β-CD) was characterized by FT-IR, solid state 13C cross polarization/magic-angle spinning (CP/MAS) NMR and elemental analyses, which proved the successful immobilization of β-CD on the silica support with Click chemistry. The retentive properties of Click β-CD were investigated under hydrophilic interaction liquid chromatography (HILIC) mode in different mobile phase conditions with a set of polar compounds including nucleosides, organic acids and alkaloids. The effects of water content, concentration of the salt and pH of the buffer solution on the retention time were studied and the results demonstrated the typical retention behavior of HILIC on Click β-CD. Separation of very polar components, such as nucleosides and oligosaccharides, and chiral separation under HILIC mode were successfully achieved. In addition, Click β-CD was chromatographically evaluated with a set of flavone glycosides. The retention curves depending on the mobile phase of acetonitrile content were “U” curves, which is an indication of HILIC/RPLC mixed-mode retention behavior. The difference of the separation selectivity between HILIC and RPLC was described as orthogonality by using geometric approach and the orthogonality reached 69.4%. The mixed-mode HPLC properties and excellent orthogonality demonstrated the flexibility in HPLC methods development and great potential in two-dimensional liquid chromatography separation.  相似文献   

19.
Four novel nonionic polar stationary phases were synthesised by anchoring first 2-mercaptoethanol and 1-thioglycerol, respectively, onto vinylised silica (ME and TG packings) followed by an on-phase oxidation with excess hydrogen peroxide in aqueous medium which yielded sulphoxide analogues of the embedded sulphide groups, i. e. oxidised 2-mercaptoethanol (MEO) and oxidised 1-thioglycerol (TGO) packings. Chromatographic characteristics of these stationary phases were evaluated comparatively to three commercial so-called 'diol' columns. U-shaped response curves of retention factors of adenosine and guanosine with hydro-organic eluents containing 5-95% v/v ACN as well as noticeable CH(2)-increment selectivity demonstrated multimodal separation capabilities of the developed amphiphilic materials, i. e. columns can be operated both in hydrophilic interaction chromatography (HILIC) and in RP mode. Although the selector ligands were physico-chemically related, considerably differing retention and selectivity patterns were observed in the HILIC mode. Thereby the introduction of additional hydroxyl groups in the chromatographic ligand resulted in selectivity increments that were different from those obtained by sulphur oxidation. For example, a set of five vitamins delivered five different elution orders with the overall seven columns. A close examination of HILIC separations of nucleobases and nucleosides on the developed packings revealed that (i) the amount of ACN in the eluent adopts a pivotal role in adjusting retention, (ii) the linearity of the relationship log (retention factor) versus log (volume fraction of water in the eluent) increases with phase polarity in the range of 5-40% v/v water, (iii) the slopes are higher with solutes having more polar interactive sites, (iv) the van't Hoff plots are linear (range 15-45 degrees C) with negative retention enthalpy values DeltaH (-4.5 to -14.5 kJ/mol) and (v) the -DeltaH values tend to be higher with more polar phases and more polar analytes. Based on these data the HILIC retention mechanism is described to be composed of both partitioning and adsorption processes. Distinct types of polar interactive sites in the chromatographic ligands may generate mixed-mode HILIC separation conditions that may additionally be superimposed by surface silanol contributions.  相似文献   

20.
Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号