首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ten dimensional string theories as well as eleven dimensional supergravity are conjectured to arise as limits of a more basic theory, traditionally dubbed M-theory. This notion is confined to the ten dimensional supersymmetric theories. String theory, however, also contains ten dimensional non-supersymmetric theories that have not been incorporated into this picture. In this note we explore the possibility of generating the low energy spectra of various non-supersymmetric heterotic string vacua from the Horava–Witten model. We argue that this can be achieved by imposing on the Horava–Witten model an invariance with respect to some extra operators which identify the orbifold fixed planes in a non-trivial way, and we demonstrate it for the E8 and SO(16)×SO(16) heterotic string vacua in ten dimensions.  相似文献   

2.
We present new non-linear realizations of the N = 1 supergravity algebra. They allow us to build interesting realistic models of the four forces of nature. These models are different from all previous ones in that particles do not appear in (broken) supersymmetric multiplets.These new non-linear realizations also permit us to construct the effective low-energy lagrangian of an arbitrary supergravity theory in which supersymmetry is spontaneously broken. We are thus able to analyze what are the model-independent low-energy effects of supergravity. We find that the number of Higgs fields and the way they couple to quark and lepton matter is a feature which distinguishes supersymmetric theories from non-supersymmetric ones.  相似文献   

3.
Certain supergravity theories admit a remarkable consistent dimensional reduction in which the internal space is a sphere. Examples include type IIB supergravity reduced on S5, and eleven-dimensional supergravity reduced on S4 or S7. Consistency means that any solution of the dimensionally-reduced theory lifts to give a solution in the higher dimension. Although supersymmetry seems to play a role in the consistency of these reductions, it cannot be the whole story since consistent sphere reductions of non-supersymmetric theories are also known, such as the reduction of the effective action of the bosonic string in any dimension D on either a 3-sphere or a (D−3)-sphere, retaining the gauge bosons of SO(4) or SO(D−2) respectively. We show that although there is no supersymmetry, there is nevertheless a natural Killing spinor equation for the D-dimensional bosonic string. A projection of the full integrability condition for these Killing spinors gives rise to the bosonic equations of motion (just as happens in the supergravity examples). Thus it appears that by extending the notion of supersymmetry to “pseudo-supersymmetry” in this way, one may be able to obtain a broader understanding of a relation between Killing spinors and consistent sphere reductions.  相似文献   

4.
Apply the T-duality and smeared twist to the D3-brane solution one can construct the supergravity backgrounds which may dual to supersymmetric or non-supersymmetric non-commutative dipole field theory. We introduce D7-brane probe into the dual supergravity background to study the chiral dynamics and meson spectrum therein. We first find that the non-commutative dipole field does not induce the chiral symmetry breaking even if the supersymmetry was completely broken, contrast to the conventional believing that the chiral symmetry will be broken in the non-supersymmetric theory. Next, we find that the dipole field does not modify the meson spectrum in the supersymmetric theory while it will reduce the meson bound-state energy in the non-supersymmetric theory. We also evaluate the static quark–anti-quark potential and see that the dipole field has an effect to produce attractive force between the quark and anti-quark.  相似文献   

5.
For N 3 2{\mathcal{N}\ge 2} supergravities, BPS black hole solutions preserving four supersymmetries can be superposed linearly, leading to well defined solutions containing an arbitrary number of such BPS black holes at arbitrary positions. Being stationary, these solutions can be understood via associated non-linear sigma models over pseudo-Riemannian spaces coupled to Euclidean gravity in three spatial dimensions. As the main result of this paper, we show that whenever this pseudo-Riemannian space is an irreducible symmetric space \mathfrakG/\mathfrakH*{\mathfrak{G}/\mathfrak{H}^*}, the most general solutions of this type can be entirely characterised and derived from the nilpotent orbits of the associated Lie algebra \mathfrakg{\mathfrak{g}}. This technique also permits the explicit computation of non-supersymmetric extremal solutions which cannot be obtained by truncation to N=2{\mathcal{N}=2} supergravity theories. For maximal supergravity, we not only recover the known BPS solutions depending on 32 independent harmonic functions, but in addition find a set of non-BPS solutions depending on 29 harmonic functions. While the BPS solutions can be understood within the appropriate N=2{\mathcal{N}=2} truncation of N=8{\mathcal{N}=8} supergravity, the general non-BPS solutions require the whole field content of the theory.  相似文献   

6.
A family of new twistor string theories is constructed and shown to be free from world-sheet anomalies. The spectra in space-time are calculated and shown to give Einstein supergravities with second order field equations instead of the higher derivative conformal supergravities that arose from earlier twistor strings. The theories include one with the spectrum of N = 8 supergravity, another with the spectrum of N = 4 supergravity coupled to N = 4 super-Yang-Mills, and a family with N ≥ 0 supersymmetries with the spectra of self-dual supergravity coupled to self-dual super-Yang-Mills. The non-supersymmetric string with N = 0 gives self-dual gravity coupled to self-dual Yang-Mills and a scalar. A three-graviton amplitude is calculated for the N = 8 and N = 4 theories and shown to give a result consistent with the cubic interaction of Einstein supergravity.  相似文献   

7.
We holographically study supersymmetric deformations of \(N=3\) and \(N=1\) superconformal field theories in three dimensions using four-dimensional \(N=4\) gauged supergravity coupled to three-vector multiplets with non-semisimple \(SO(3)\ltimes (\mathbf {T}^3,\hat{\mathbf {T}}^3)\) gauge group. This gauged supergravity can be obtained from a truncation of 11-dimensional supergravity on a tri-Sasakian manifold and admits both \(N=1,3\) supersymmetric and stable non-supersymmetric \(AdS_4\) critical points. We analyze the BPS equations for SO(3) singlet scalars in detail and study possible supersymmetric solutions. A number of RG flows to non-conformal field theories and half-supersymmetric domain walls are found, and many of them can be given analytically. Apart from these “flat” domain walls, we also consider \(AdS_3\)-sliced domain wall solutions describing two-dimensional conformal defects with \(N=(1,0)\) supersymmetry within the dual \(N=1\) field theory while this type of solutions does not exist in the \(N=3\) case.  相似文献   

8.
Extended supergravity theories with gauged SO(N) internal symmetry have, for N ≥ 4, scalar field potentials which are unbounded below. Nevertheless, it is argued that the theories have ground states with anti-de Sitter background geometry which are stable against fluctuations which vanish sufficiently fast at spatial infinity. Stability is implied because the appropriate conserved energy functional is positive for such fluctuations. Anti-de Sitter space is not globally hyperbolic, but the boundary conditions required for positive energy are also shown to give free field theories with well-defined Cauchy problem. New information on the particle representations of OSp(1, 4) supersymmetry is presented as part of the argument. Supersymmetry requires boundary conditions for spin 0 fields such that only the improved stress tensor leads to a conserved energy functional. Although the stability arguments support the view that gauged supergravity theories are acceptable quantum field theories, the problem of a large cosmological term in the Ads phase of the theories is still unsolved.  相似文献   

9.
We give generalizations of extended Poincaré supergravity with arbitrarily many supersymmetries in the absence of central charges in three dimensions by gauging its intrinsic global SO(N) symmetry. We call these 0 (Aleph-null) supergravity theories. We further couple a non-Abelian supersymmetric Chern-Simons theory and an Abelian topological BF theory to 0 supergravity. Our result overcomes the previous difficulty for supersymmetrization of Chern-Simons theories beyond N = 4. This feature is peculiar to the Chern-Simons and BF theories including supergravity in three dimensions. We also show that dimensional reduction schemes for four-dimensional theories such as N = 1 self-dual supersymmetric Yang-Mills theory or N = 1 supergravity theory that can generate 0 globally and locally supersymmetric theories in three dimensions. As an interesting application, we present 0 supergravity Liouville theory in two dimensions after appropriate dimensional reduction from three dimensions.  相似文献   

10.
《Nuclear Physics B》1995,451(3):547-575
We derive the T-duality transformations that transform a general d = 10 solution of the type-IIA string with one isometry to a solution of the type-IIB string with one isometry and vice versa. In contrast to other superstring theories, the T-duality transformations are not related to a non-compact symmetry of a d = 9 supergravity theory. We also discuss S-duality in d = 9 and d = 10 and the relationship with eleven-dimensional supergravity theory. We apply these dualities to generate new solutions of the type-11A and type-IIB superstrings and of eleven-dimensional supergravity.  相似文献   

11.
We give generalizations of extended Poincaré supergravity with arbitrarily many supersymmetries in the absence of central charges in three dimensions by gauging its intrinsic global SO(N) symmetry. We call these 0 (Aleph-null) supergravity theories. We further couple a non-Abelian supersymmetric Chern-Simons theory and an Abelian topological BF theory to 0 supergravity. Our result overcomes the previous difficulty for supersymmetrization of Chern-Simons theories beyond N = 4. This feature is peculiar to the Chern-Simons and BF theories including supergravity in three dimensions. We also show that dimensional reduction schemes for four-dimensional theories such as N = 1 self-dual supersymmetric Yang-Mills theory or N = 1 supergravity theory that can generate 0 globally and locally supersymmetric theories in three dimensions. As an interesting application, we present 0 supergravity Liouville theory in two dimensions after appropriate dimensional reduction from three dimensions.  相似文献   

12.
We give generalizations of extended Poincaré supergravity with arbitrarily many supersymmetries in the absence of central charges in three dimensions by gauging its intrinsic global SO(N) symmetry. We call these ℵ0 (Aleph-null) supergravity theories. We further couple a non-Abelian supersymmetric Chern-Simons theory and an Abelian topological BF theory to ℵ0 supergravity. Our result overcomes the previous difficulty for supersymmetrization of Chern-Simons theories beyond N = 4. This feature is peculiar to the Chern-Simons and BF theories including supergravity in three dimensions. We also show that dimensional reduction schemes for four-dimensional theories such as N = 1 self-dual supersymmetric Yang-Mills theory or N = 1 supergravity theory that can generate ℵ0 globally and locally supersymmetric theories in three dimensions. As an interesting application, we present ℵ0 supergravity Liouville theory in two dimensions after appropriate dimensional reduction from three dimensions.  相似文献   

13.
In this note, we first give a quick presentation of the supergeometry underlying supergravity theories, using an intrinsic differential geometric language. For this, we adopt the point of view of Cartan geometries, and rely as well on the work of John Lott, who has found a unified geometrical interpretation of the torsion constraints for many supergravity theories, based on the use of H-structures. In this framework, the constraints amount to requiring first-order integrability of H-structures, for a specific supergroup H.The supergroup H used by Lott is not the usual diagonal representation of the Lorentz group on superspace, but an extension of the latter. This extension appears to be natural and it can be related to the super-Poincaré group. We also observe that the constraints arising from the requirement of first-order integrability have basically the same form, in any spacetime dimension.Looking at supergravity from an affine viewpoint (i.e. as a gauge theory for the super-Poincaré group), we show that requiring first-order integrability amounts to requiring the equivalence, up to gauge transformations, between infinitesimal gauge supertranslations acting on the supervielbein and infinitesimal superdiffeomorphisms acting on the supervielbein.The latter action is performed through a covariant Lie derivative, whose expression involves naturally the supertorsion tensor. We use this expression to show that the term added to the spin connection, in the supercovariant derivative of d=11 supergravity, has a natural superspace origin. In particular, the 4-form field strength is related to a specific component of the supertorsion tensor.We conclude by some general remarks concerning Killing spinors in geometry and supergravity, discussing their possible interpretations, as Killing vector fields on a specific supermanifold on one hand, and as parallel spinors for an appropriate connection on the other hand. We show that this last interpretation is very natural from the point of view of Klein and Cartan geometries.  相似文献   

14.
We show the extension of the Forgacs-Manton Killing symmetry for gauge theories, to solutions, extended to superspace, of the d = 11 supergravity theory.  相似文献   

15.
《Nuclear Physics B》2001,600(1):62-80
We show that a four-parameter class of (3+1)-dimensional NCOS theories can be obtained by dimensional reduction on a general 2-torus from OM theory. Compactifying two spatial directions of NCOS theory on a 2-torus, we study the transformation properties under the SO(2,2;Z) T-duality group. We then discuss non-perturbative configurations of non-commutative super Yang–Mills theory. In particular, we calculate the tension for magnetic monopoles and (p,q) dyons and exhibit their six-dimensional origin, and construct a supergravity solution representing an instanton in the gauge theory. We also compute the potential for a monopole–antimonopole in the supergravity approximation.  相似文献   

16.
N?3 supergravity theories with vanishing one-loop trace anomaly may be constructed fron three basic N=3 multiplets, one of which contains an antisymmetric tensor gauge field. As an example we construct the N=4 theory and discuss its relationship to ten-dimensional supergravity.  相似文献   

17.
Generating supersymmetric AdS solutions in non-minimal supergravity in four dimensions is notoriously difficult. Indeed, it is a longstanding lore that such solutions exist only for old minimal supergravity. In this paper, we construct a dual formulation for general N=1 supergravity-matter systems that avoids the problem. In the case of pure supergravity without a cosmological constant, it coincides with the usual non-minimal (n=−1) supergravity, but in the presence of matter (or a cosmological constant) our formulation differs considerably. We also elaborate upon the framework of conformal superspace and the compensator method as applied to our theory. In particular, we show that one can encode the details of the Kähler potential and superpotential entirely within the geometry of superspace so that the general sigma-model action is encoded in a single compact term: the supervolume. Finally, we discuss the issue of supercurrents and propose a general form for the supercurrent in AdS.  相似文献   

18.
We consider an N = 1 supergravity theory with multiple compensators and show that supersymmetry is broken by a solution to the equation of motion of a compensator. When a chiral scalar superfield is coupled to supergravity, we discuss various aspects of supersymmetry breaking and show that the super-Higgs-Kibble effect is operative. Possible applications of this mechanism of supersymmetry breaking in model building and extended supergravity theories are indicated.  相似文献   

19.
20.
We give a detailed derivation of a supersymmetric configuration of wrapped D5 branes on a two-cycle of a warped resolved conifold. Our analysis reveals that the resolved conifold should support a non-Kähler metric with an SU(3) structure. We use this as a starting point of the geometric transition in type IIB theory. A mirror, and a subsequent flop transition using an intermediate M-theory configuration with a G2 structure, gives rise to the complete IR geometric transition in type IIA theory. A further mirror transformation gives the type IIB gravity dual of the IR gauge theory on the wrapped D5 branes. Expectedly non-Kähler deformations of the resolved and the deformed conifolds appear as the gravity duals of the confining gauge theories in type IIA and type IIB theories respectively, although in more generic cases these manifolds could also be non-geometric. In the local limit we reproduce precisely the scenarios presented in our earlier works. Our present work should therefore be viewed as providing a supergravity proof of geometric transitions in the full global scenarios in type II theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号