首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We test the holographic relation between the vacuum expectation values of gauge invariant operators in \({\mathcal {N}} = 6\) U\(_k(N)\times \mathrm{U}_{-k}(N)\) mass-deformed ABJM theory and the LLM geometries with \({\mathbb {Z}}_k\) orbifold in 11-dimensional supergravity. To do so, we apply the Kaluza–Klein reduction to construct a 4-dimensional gravity theory and implement the holographic renormalization procedure. We obtain an exact holographic relation for the vacuum expectation values of the chiral primary operator with conformal dimension \(\Delta = 1\), which is given by \(\langle {\mathcal {O}}^{(\Delta =1)}\rangle = N^{\frac{3}{2}} \, f_{(\Delta =1)}\), for large N and \(k=1\). Here the factor \(f_{(\Delta )}\) is independent of N. Our results involve an infinite number of exact dual relations for all possible supersymmetric Higgs vacua and so provide a non-trivial test of gauge/gravity duality away from the conformal fixed point. We extend our results to the case of \(k\ne 1\) for LLM geometries represented by rectangular-shaped Young diagrams. We also discuss the exact mapping of the gauge/gravity at finite N for classical supersymmetric vacuum solutions in field theory side and corresponding classical solutions in gravity side.  相似文献   

2.
3.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

4.
Consider a statistical physical model on the d-regular infinite tree \(T_{d}\) described by a set of interactions \(\Phi \). Let \(\{G_{n}\}\) be a sequence of finite graphs with vertex sets \(V_n\) that locally converge to \(T_{d}\). From \(\Phi \) one can construct a sequence of corresponding models on the graphs \(G_n\). Let \(\{\mu _n\}\) be the resulting Gibbs measures. Here we assume that \(\{\mu _{n}\}\) converges to some limiting Gibbs measure \(\mu \) on \(T_{d}\) in the local weak\(^*\) sense, and study the consequences of this convergence for the specific entropies \(|V_n|^{-1}H(\mu _n)\). We show that the limit supremum of \(|V_n|^{-1}H(\mu _n)\) is bounded above by the percolative entropy \(H_{\textit{perc}}(\mu )\), a function of \(\mu \) itself, and that \(|V_n|^{-1}H(\mu _n)\) actually converges to \(H_{\textit{perc}}(\mu )\) in case \(\Phi \) exhibits strong spatial mixing on \(T_d\). When it is known to exist, the limit of \(|V_n|^{-1}H(\mu _n)\) is most commonly shown to be given by the Bethe ansatz. Percolative entropy gives a different formula, and we do not know how to connect it to the Bethe ansatz directly. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.  相似文献   

5.
We investigate the gauge/gravity duality between the \(\mathcal{N} = 6\) mass-deformed ABJM theory with \(\hbox {U}_k(N)\times \hbox {U}_{-k}(N)\) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(2,1)\(\times \)SO(4)/\({\mathbb {Z}}_k\) \(\times \)SO(4)/\({\mathbb {Z}}_k\) isometry, in terms of a KK holography, which involves quadratic order field redefinitions. We establish the quadratic order KK mappings for various gauge invariant fields in order to obtain the canonical 4-dimensional gravity equations of motion and to reduce the LLM solutions to an asymptotically AdS\(_4\) gravity solutions. The non-linearity of the KK maps indicates that we can observe the true purpose of the non-linear KK holography of the LLM solutions. We read the vacuum expectation value of conformal dimension two operator from the asymptotically AdS\(_4\) gravity solutions. For the LLM solutions which are represented by square-shaped Young diagrams, we compare the vacuum expectation value obtained from the holographic procedure with the result obtained from the field theory, which is given by \(\langle \mathcal{O}^{(\Delta =2)}\rangle =\sqrt{k}N^{\frac{3}{2}}f_{(\Delta =2)}+\mathcal{O}(N)\), where \(f_{\Delta }\) is independent of N. Based on this result, we examine the gauge/gravity duality in the large N limit and finite k. We also show that the vacuum expectation values of the massive KK graviton modes are vanishing as expected by the supersymmetry.  相似文献   

6.
We consider the n-component \(|\varphi |^4\) lattice spin model (\(n \ge 1\)) and the weakly self-avoiding walk (\(n=0\)) on \(\mathbb Z^d\), in dimensions \(d=1,2,3\). We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as \(r^{-(d+\alpha )}\) with \(\alpha \in (0,2)\). The upper critical dimension is \(d_c=2\alpha \). For \(\varepsilon >0\), and \(\alpha = \frac{1}{2} (d+\varepsilon )\), the dimension \(d=d_c-\varepsilon \) is below the upper critical dimension. For small \(\varepsilon \), weak coupling, and all integers \(n \ge 0\), we prove that the two-point function at the critical point decays with distance as \(r^{-(d-\alpha )}\). This “sticking” of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.  相似文献   

7.
The three-body decays \(B^0_s \rightarrow \psi (2S,3S) \pi ^+ \pi ^-\) are studied based on the perturbative QCD approach. With the help of the nonperturbative two-pion distribution amplitudes, the analysis is simplified into the quasi-two-body processes. Besides the traditional factorizable and nonfactorizable diagrams at the leading order, the next-to-leading order vertex corrections are also included to cancel the scale dependence. The \(f_0(980)\), \(f_0(1500)\) resonance contributions as well as the nonresonant contributions are taken into account using the presently known \(\pi \pi \) time-like scalar form factor for the \(s\bar{s}\) component. It is found that the predicted \(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-\) decay spectra in the pion pair invariant mass shows a similar behavior as the experiment. The calculated S-wave contributions to the branching ratio of \(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-\) is \(6.0\times 10^{-5}\), which is in agreement with the LHCb data \(\mathcal {B}(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-)=(7.2\pm 1.2)\times 10^{-5} \) within errors. The estimate of \(\mathcal {B}(B^0_s \rightarrow \psi (3S) \pi ^+ \pi ^-)\) can reach the order of \(10^{-5}\), pending the corresponding measurements.  相似文献   

8.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

9.
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear \(\sigma \)-model with cosmological constant. The \(\sigma \)-model can be perceived as exterior configuration of a spontaneously-broken \(SO(D-1)\) global higher-codimensional “monopole”. Here we allow the kinetic term of the \(\sigma \)-model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola–Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For \(\Lambda >0\) in 4d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For \(\Lambda <0\) we only have black hole solutions with one horizon, save for the 4d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (\(M_2\), \(dS_2\), or \(AdS_2\)) with (D-2)-sphere. We study all possible factorized channels.  相似文献   

10.
We investigate static and spherically symmetric black hole solutions in the generalized Proca theory which corresponds to the generalization of the shift-symmetric scalar–tensor Horndeski theory to the vector–tensor theory. Any solution obtained in this paper possesses a constant spacetime norm of the vector field, \(X:=-\frac{1}{2}g^{\mu \nu }A_\mu A_\nu =X_0=\mathrm{constant}\). The solutions in the theory with generalized quartic coupling \(G_4(X)\) generalize the stealth Schwarzschild and the Schwarzschild- (anti-) de Sitter solutions obtained in the theory with the nonminimal coupling to the Einstein tensor \(G^{\mu \nu } A_\mu A_\nu \). While in the vector–tensor theory with the coupling \(G^{\mu \nu }A_\mu A_\nu \) the electric charge does not explicitly affect the spacetime geometry, in more general cases with nonzero \(G_{4XX}(X_0)\ne 0\) this property does not hold in general. The solutions in the theory with generalized cubic coupling \(G_3(X)\) are given by the Schwarzschild- (anti-) de Sitter spacetime, where the dependence on \(G_3(X)\) does not appear in the metric function.  相似文献   

11.
Using the fact that eleven-dimensional supergravity yields type IIA supergravity under dimensional reduction on a circle, we determine higher-derivative terms of 11-dimensional supergravity including the \( R^4 \), \( ({\partial {F_4}})^2 R^2 \) and \( ({\partial {F_4}})^4 \) terms.  相似文献   

12.
Using scalar–vector–tensor Brans Dicke (VBD) gravity (Ghaffarnejad in Gen Relativ Gravit 40:2229, 2008; Gen Relativ Gravit 41:2941, 2009) in presence of self interaction BD potential \(V(\phi )\) and perfect fluid matter field action we solve corresponding field equations via dynamical system approach for flat Friedmann Robertson Walker metric (FRW). We obtained three type critical points for \(\Lambda CDM\) vacuum de Sitter era where stability of our solutions are depended to choose particular values of BD parameter \(\omega \). One of these fixed points is supported by a constant potential which is stable for \(\omega <0\) and behaves as saddle (quasi stable) for \(\omega \ge 0\). Two other ones are supported by a linear potential \(V(\phi )\sim \phi \) which one of them is stable for \(\omega =0.27647\). For a fixed value of \(\omega \) there is at least 2 out of 3 critical points reaching to a unique critical point. Namely for \(\omega =-0.16856(-0.56038)\) the second (third) critical point become unique with the first critical point. In dust and radiation eras we obtained one critical point which never become unique fixed point. In the latter case coordinates of fixed points are also depended to \(\omega \). To determine stability of our solutions we calculate eigenvalues of Jacobi matrix of 4D phase space dynamical field equations for de Sitter, dust and radiation eras. We should point also potentials which support dust and radiation eras must be similar to \(V(\phi )\sim \phi ^{-\frac{1}{2}}\) and \(V(\phi )\sim \phi ^{-1}\) respectively. In short our study predicts that radiation and dust eras of our VBD–FRW cosmology transmit to stable de Sitter state via non-constant potential (effective variable cosmological parameter) by choosing \(\omega =0.27647\).  相似文献   

13.
We study the constraints of the generic two-Higgs-doublet model (2HDM) type-III and the impacts of the new Yukawa couplings. For comparisons, we revisit the analysis in the 2HDM type-II. To understand the influence of all involving free parameters and to realize their correlations, we employ a \(\chi \)-square fitting approach by including theoretical and experimental constraints, such as the S, T, and U oblique parameters, the production of standard model Higgs and its decay to \(\gamma \gamma \), \(WW^*/ZZ^*\), \(\tau ^+\tau ^-\), etc. The errors of the analysis are taken at 68, 95.5, and \(99.7~\%\) confidence levels. Due to the new Yukawa couplings being associated with \(\cos (\beta -\alpha )\) and \(\sin (\beta -\alpha )\), we find that the allowed regions for \(\sin \alpha \) and \(\tan \beta \) in the type-III model can be broader when the dictated parameter \(\chi _F\) is positive; however, for negative \(\chi _F\), the limits are stricter than those in the type-II model. By using the constrained parameters, we find that the deviation from the SM in \(h\rightarrow Z\gamma \) can be of \(\mathcal{O}(10~\%)\). Additionally, we also study the top-quark flavor-changing processes induced at the tree level in the type-III model and find that when all current experimental data are considered, we get \(Br(t\rightarrow c(h, H) )< 10^{-3}\) for \(m_h=125.36\) and \(m_H=150\) GeV, and \(Br(t\rightarrow cA)\) slightly exceeds \(10^{-3}\) for \(m_A =130\) GeV.  相似文献   

14.
We present a simple and complete classification of static solutions in the Einstein–Maxwell system with a massless scalar field in arbitrary \(n(\ge 3)\) dimensions. We consider spacetimes which correspond to a warped product \(M^2 \times K^{n-2}\), where \(K^{n-2}\) is a \((n-2)\)-dimensional Einstein space. The scalar field is assumed to depend only on the radial coordinate and the electromagnetic field is purely electric. Suitable Ansätze enable us to integrate the field equations in a general form and express the solutions in terms of elementary functions. The classification with a non-constant real scalar field consists of nine solutions for \(n\ge 4\) and three solutions for \(n=3\). A complete geometric analysis of the solutions is presented and the global mass and electric charge are determined for asymptotically flat configurations. There are two remarkable features for the solutions with \(n\ge 4\): (i) Unlike the case with a vanishing electromagnetic field or constant scalar field, asymptotically flat solution is not unique, and (ii) The solutions can asymptotically approach the Bertotti–Robinson spacetime depending on the integrations constants. In accordance with the no-hair theorem, none of the solutions are endowed of a Killing horizon.  相似文献   

15.
Considering the mass, parity and \(D^0 p\) decay mode, we tentatively assign the \(\Lambda _c(2940)\) as the \(P-\)wave states with one radial excitation. Then, via studying the strong decay behavior of the \(\Lambda _c(2940)\) within the \(^3P_0\) model, we obtain that the total decay widths of the \(\Lambda _{c1}(\frac{1}{2}^-,2P)\) and \(\Lambda _{c1}(\frac{3}{2}^-,2P)\) states are 16.27 and 25.39 MeV, respectively. Compared with the experimental total width \(27.7^{+8.2}_{-6.0}\pm 0.9^{+5.2}_{-10.4}~\mathrm {MeV}\) measured by LHCb Collaboration, both assignments are allowed, and the \(J^P=\frac{3}{2}^-\) assignment is more favorable. Other \(\lambda \)-mode \(\Sigma _c(2P)\) states are also investigated, which are most likely to be narrow states and have good potential to be observed in future experiments.  相似文献   

16.
We study D-dimensional Einstein–Gauss–Bonnet gravitational model including the Gauss–Bonnet term and the cosmological term \(\Lambda \). We find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters \(H >0\) and h, corresponding to factor spaces of dimensions \(m >2\) and \(l > 2\), respectively. These solutions contain a fine-tuned \(\Lambda = \Lambda (x, m, l, \alpha )\), which depends upon the ratio \(h/H = x\), dimensions of factor spaces m and l, and the ratio \(\alpha = \alpha _2/\alpha _1\) of two constants (\(\alpha _2\) and \(\alpha _1\)) of the model. The master equation \(\Lambda (x, m, l,\alpha ) = \Lambda \) is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals. The explicit solution for \(m = l\) is presented in “Appendix”. Imposing certain restrictions on x, we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. We also consider a subclass of solutions with small enough variation of the effective gravitational constant G and show the stability of all solutions from this subclass.  相似文献   

17.
We consider the Dirichlet Laplacian \(H_\gamma \) on a 3D twisted waveguide with random Anderson-type twisting \(\gamma \). We introduce the integrated density of states \(N_\gamma \) for the operator \(H_\gamma \), and investigate the Lifshits tails of \(N_\gamma \), i.e. the asymptotic behavior of \(N_\gamma (E)\) as \(E \downarrow \inf \mathrm{supp}\, dN_\gamma \). In particular, we study the dependence of the Lifshits exponent on the decay rate of the single-site twisting at infinity.  相似文献   

18.
Recent released Planck data and other astronomical observations show that the universe may be anisotropic on large scales. This hints a cosmological privileged axis in our anisotropic expanding universe. This paper proceeds a modified redshift in anisotropic cosmological model as \( 1+\tilde{z}(t,\hat{\mathbf{p }})=\frac{a(t_{0)}}{a(t)}(1-A(\hat{\mathbf{n }}.\hat{\mathbf{p }}))\) (where A is the magnitude of anisotropy, \(\hat{\mathbf{n }}\) is the direction of privileged axis, and \(\hat{\mathbf{p }}\) is the direction of each SNe Ia sample to galactic coordinates) along with anisotropic parameter \(\delta =\frac{A(\hat{\mathbf{n }}.\hat{\mathbf{p }})}{1+A(\hat{\mathbf{n }}.\hat{\mathbf{p }})}\). The luminosity distance is expanded with model-independent cosmographic parameters as a function of modified redshift \(\tilde{z}\). As the transformation matrix \(M(n\times n)\) is obtained to convert the Taylor series coefficients of isotropic luminosity distance to corresponding anisotropic parameters. These results culminate the magnitude of anisotropy about \(\mid A\mid \simeq 10^{-3}\) and the direction of preferred axis as \((l,b)=\left( 297^{-34}_{+34},3^{-28}_{+28}\right) \), which are consistent with other studies in \(1-\sigma \) confidence level.  相似文献   

19.
In this paper, we examine the possible realization of a new inflation family called “shaft inflation” by assuming the modified Chaplygin gas model and a tachyon scalar field. We also consider the special form of the dissipative coefficient \(\Gamma ={a_0}\frac{T^{3}}{\phi ^{2 }}\) and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the \(n_s \)\( \phi ,\, n_s \)r, and \(n_s \)\( \alpha _s\) planes (where \(n_s,\, \alpha _s,\, r\), and \(\phi \) represent the spectral index, its running, tensor-to-scalar ratio, and scalar field, respectively) are being developed, which lead to the constraints \(r< 0.11\), \(n_s=0.96 \pm 0.025\), and \(\alpha _s =-0.019 \pm 0.025\). It is quite interesting that these results of the inflationary parameters are compatible with BICEP2, WMAP \((7+9)\) and recent Planck data.  相似文献   

20.
We present a microscopic derivation of the two-dimensional focusing cubic nonlinear Schrödinger equation starting from an interacting N-particle system of Bosons. The interaction potential we consider is given by \(W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)\) for some spherically symmetric and compactly supported potential \(W \in L^\infty ({\mathbb {R}}^2, {\mathbb {R}})\). The class of initial wave functions is chosen such that the variance in energy is small. Furthermore, we assume that the Hamiltonian \( H_{W_\beta , t}=-\sum _{j=1}^N \Delta _j+\sum _{1\le j< k\le N} W_\beta (x_j-x_k) +\sum _{j=1}^N A_t(x_j)\) fulfills stability of second kind, that is \( H_{W_\beta , t} \ge -\,CN\). We then prove the convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in either Sobolev trace norm, if \(\Vert A_t\Vert _p < \infty \) for some \(p>2\), or in trace norm, for more general external potentials. For trapping potentials of the form \(A(x)=C |x|^s\; , C>0\), the condition \( H_{W_\beta , t} \ge -\,CN\) can be fulfilled for a certain class of interactions \(W_\beta \), for all \(0< \beta < \frac{s+1}{s+2}\), see Lewin et al. (Proc Am Math Soc 145:2441–2454, 2017).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号