首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

2.
The Au-assisted electroless etching of p-type silicon substrate in HF/H2O2 solution at 50 °C was investigated. The dependence of the crystallographic orientation, the concentration of etching solution and the silicon resistivity on morphology of etched layer was studied. The layers formed on silicon were investigated by scanning electron microscopy (SEM). It was demonstrated that although the deposited Au on silicon is a continuous film, it can produce a layer of silicon nanowires or macropores depending on the used solution concentration.  相似文献   

3.
In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K2S2O8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K2S2O8 solution has been proposed.  相似文献   

4.
Highly oriented silicon nanowire (SiNW) layer was fabricated by etching Si substrate in HF/(AgNO3 + Na2S2O8) solution at 50 °C. The morphology and the photoluminescence (PL) of the etched layer as a function of Na2S2O8 concentration were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). It was demonstrated that the morphology of the etched layers depends on the Na2S2O8 concentration. Room-temperature photoluminescence (PL) from etched layer was observed. It was found that the utilisation of Na2S2O8 decreases PL peak intensity. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

5.
The morphology and the photoluminescence (PL) of Bi-assisted electroless etched p-type silicon in HF–Co(NO3)2–H2O solution as a function of etching time were studied. The scanning electron microscopy (SEM) observations have shown that the morphology of etched layers strongly depends on the etching time and it was observed that macropores filled with silicon crystallites are formed for etching time higher than 50 min. Moreover, it was found that the PL spectra show a red emission with a peak centred at 640 nm. The PL peak intensity reaches a maximum for etching time of 50 min, and then it decreases with increasing etching time. The Fourier transform infrared (FTIR) measurements have shown a strong increase in intensities of the relevant Si–H and in the amount of oxide (absorption band at 1070 cm?1) for long etching time which was ascribed to an increase in the number of Si crystallites formed in the macropores.  相似文献   

6.
Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that CO bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.  相似文献   

7.
In this work, an experimental study on the chemical etching reaction of polycrystalline p-type 6H-SiC was carried out in HF/Na2O2 solutions. The morphology of the etched surface was examined with varying Na2O2 concentration, etching time, agitation speed and temperature. The surfaces of the etched samples were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. The surface morphology of samples etched in HF/Na2O2 is shown to depend on the solution composition and bath temperature. The investigation of the HF/Na2O2 solutions on 6H-SiC surface shows that as Na2O2 concentration increases, the etch rate increases to reach a maximum value at about 0.5 M and then decreases. A similar behaviour has been observed when temperature of the solution is increased. The maximum etch rate is found for 80 °C. In addition, a new polishing etching solution of 6H-SiC has been developed. This result is very interesting since to date no chemical polishing solution has been developed on the material.  相似文献   

8.
This very paper is focusing on the preparation of porous nanostructures in n-type silicon (1 1 1) wafer by chemical etching technique in alkaline aqueous solutions of 5 M NaOH, 5 M K2CO3 and 5 M K3PO4, and particularly, on its ultraviolet-blue photoluminescence emission. The anodic chemical etched silicon wafer has been characterized by means of optical microscopy, scanning electron microscopy, fluorescence spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. This very surface morphology characterization has been clearly shown - the effect of anodic-chemical-etching procedure processed in K2CO3 or K3PO4 was much vigorous than that processed in NaOH. The FTIR spectra indicate that the silicon oxide was formed on the surface of electrochemical etched n-Si (1 1 1) wafers, yet not on that of the pure chemical etched ones anyhow. And an intense ultraviolet-blue photoluminescence emission is observed, which then differs well from the silicon specimen etched in alkaline solution with no anodic potential applied. The proper photoluminescence mechanism is discussed, and hence there may be a belief that the intense ultraviolet-blue photoluminescence emission would be attributed to the silicon oxide coating formed on silicon wafer in anodic-chemical-etching process.  相似文献   

9.
Reflectivity of porous-pyramids structured silicon surface   总被引:1,自引:0,他引:1  
The antireflection of porous-pyramids structured silicon surface has been studied. The porous surface is formed by stain etching in HF/Fe(NO3)3 aqueous solution after textured in KOH/IPA solution. Reflectivity measurements show an overall reflectance of 4.2% for porous-pyramids textured silicon surface in the range from 400 to 900 nm. An optimal etching time of 30 min is obtained when both reflectivity and photo-generated carriers lifetime are considered. This technique may be probably used in the texturization process for high-efficiency silicon solar cells.  相似文献   

10.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

11.
Multicrystalline silicon wafers are used for approximately half of all solar cells produced at present. These wafers typically have dislocation densities of up to ∼106 cm−2. Dislocations and associated impurities act as strong recombination centres for electron–hole pairs and are one of the major limiting factors in multicrystalline silicon substrate performance. In this work we have explored the possibility of using chemical methods to etch out the cores of dislocations from mc-Si wafers. We aim to maximise the aspect ratio of the depth of the etched structure to its diameter. We first investigate the Secco etch (1K2Cr2O7 (0.15 M): 2HF (49%)) as a function of time and temperature. This etch removes material from dislocation cores much faster than grain boundaries or the bulk, and produces tubular holes at dislocations. Aspect ratios of up to ∼7:1 are achieved for ∼15 μm deep tubes. The aspect ratio decreases with tube depth and for ∼40 μm deep tubes is just ∼2:1, which is not suitable for use in bulk multicrystalline silicon photovoltaics. We have also investigated a range of etches based on weaker oxidising agents. An etch comprising 1I2 (0.01 M): 2HF (49%) attacked dislocation cores, but its etching behaviour was extremely slow (<0.1 μm/h) and the pits produced had a low aspect ratio (<2:1).  相似文献   

12.
A simple and low cost method to generate single-crystalline, well-aligned silicon nanowires (SiNWs) of large area, using Ag-assisted electroless etching, is presented and the effect of differently sized Ag catalysts on the fabrication of SiNWs arrays is investigated. The experimental results show that the size of the Ag catalysts can be controlled by adjusting the pre-deposition time in the AgNO3/HF solution. The optimum pre-deposition time for the fabrication of a SiNWs array is 3 min (about 162.04 ± 38.53 nm Ag catalyst size). Ag catalysts with smaller sizes were formed in a shorter pre-deposition time (0.5 min), which induced the formation of silicon holes. In contrast, a large amount of Ag dendrites were formed on the silicon substrate, after a longer pre-deposition time (4 min). The existence of these Ag dendrites is disadvantageous to the fabrication of SiNWs. Therefore, a proper pre-deposition time for the Ag catalyst is beneficial to the formation of SiNWs.SiNWs were synthesized in the H2O2/HF solution system for different periods of time, using Ag-assisted electroless etching (pre-deposition of the Ag catalyst for 3 min). The length of the SiNWs increases linearly with immersion time. From TEM, SAED and HRTEM analysis, the axial orientation of the SiNWs is identified to be along the [001] direction, which is the same as that of the initial Si wafer. The use of HF may induce Si–Hx bonds onto the SiNW array surface. Overall, the Ag-assisted electroless etching technique has advantages, such as low temperature, operation without the need for high energy and the lack of a need for catalysts or dopants.  相似文献   

13.
Photoluminescence of porous silicon (PS) is instable due perhaps to the nanostructure modification in air. The controllable structure modification processes on the as-prepared PS were conducted by thermal oxidization and/or HF etching. The PL spectra taken from thermally oxidized PS showed a stable photoluminescence emission of 355 nm. The photoluminescence emission taken from both of PS and oxidized porous silicon (OPS) samples etched with HF were instable, which can be reversibly recovered by the HF etching procedure. The mechanism of UV photoluminescence is discussed and attributed to the transformation of luminescence centers from oxygen deficient defects to the oxygen excess defects in the thermal oxidized PS sample and surface absorbed silanol groups on PS samples during the chemical etched procedure.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) have been used to investigate the effect of reactive ion etching (RIE) on poly(methylhydrogensiloxane-co-dimethylsiloxane) surface in fluorine-based plasmas. Polysiloxane layers supported on the standard silicon wafers were etched using SF6 + O2 or CF4 + O2 plasmas. SEM studies show that the polysiloxane morphology depends on plasma chemical composition strongly. Presence of a columnar layer likely covered with a fluorine rich compound was found on the elastomer surface after the CF4 + O2 plasma exposure. After the SF6 + O2 or CF4 + O2 plasma treatment the polysiloxane surface enriches with fluorine or with fluorine and aluminum, respectively. Different morphologies and surface chemical compositions of the silicone elastomer etched in both plasmas indicate different etching mechanisms.  相似文献   

15.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

16.
The changes in morphology and chemical states of Si(1 0 0) surface upon dipping in ultrapure water were investigated by using atomic force microscope and X-ray photoelectron spectroscopy. The oxidation and the etching competitively progressed at the HF-treated Si(1 0 0) surface in ultrapure water, which made the smooth surface rough. However, the surface covered with a thick native oxide film was not etched at all. During the repetition of the oxidation and the etching, the SiO2-nuclei was, by chance, able to grow up to some size of islands and worked as the protective barrier against the water etching. Thus, the SiO2-islands would remain without being etched off, whereas rest parts of the surface could be etched off. This selective etching leads the surface morphology to become rough. Both the oxidation and the etching progressed violently as the water temperature and the dipping time increased.  相似文献   

17.
An analysis, based on angle-resolved X-ray photoelectron spectroscopy, multiple-internal-reflection infrared spectroscopy, and atomic force microscopy, of device-quality (1 0 0)silicon surfaces after etching in dilute aqueous solution of HF is presented. The analysis shows that the surface is mainly formed by a heterogeneous distribution of SiH, SiH2and SiH3 terminations, but contains sub-stoichiometric oxidized silicon. The analysis shows moreover the existence of a form of reduced silicon, not consistent with the currently accepted picture of the native HFaq-etched surface.  相似文献   

18.
In this work, an ultrasonically enhanced anodic electrochemical etching is developed to fabricate light-emitting porous silicon material. Porous silicon layer is fabricated in n-type (1 0 0) oriented silicon using HF solution and treated in selenious acid to increase the photoluminescence intensity. It is found that the increase of photoluminescence intensity after selenious acid treatment is higher in the intact zones and lower in the detached zones of ultrasonic excitation. The photoluminescence appears as a non-monotonous function of time exposure of selenious acid treatment. Surface chemical composition analysis by X-ray photoelectron spectroscopy shows formation of Si-Sex and Si-Sex-Oy on the surface of porous silicon treated with the selenious acid.  相似文献   

19.
The effect of etching time of porous silicon on solar cell performance   总被引:1,自引:0,他引:1  
Porous silicon (PS) layers based on crystalline silicon (c-Si) n-type wafers with (1 0 0) orientation were prepared using electrochemical etching process at different etching times. The optimal etching time for fabricating the PS layers is 20 min. Nanopores were produced on the PS layer with an average diameter of 5.7 nm. These increased the porosity to 91%. The reduction in the average crystallite size was confirmed by an increase in the broadening of the FWHM as estimated from XRD measurements. The photoluminescence (PL) peaks intensities increased with increasing porosity and showed a greater blue shift in luminescence. Stronger Raman spectral intensity was observed, which shifted and broadened to a lower wave numbers of 514.5 cm−1 as a function of etching time. The lowest effective reflectance of the PS layers was obtained at 20 min etching time. The PS exhibited excellent light-trapping at wavelengths ranging from 400 to 1000 nm. The fabrication of the solar cells based on the PS anti-reflection coating (ARC) layers achieved its highest efficiency at 15.50% at 20 min etching time. The I-V characteristics were studied under 100 mW/cm2 illumination conditions.  相似文献   

20.
This paper describes the effect of the SF6 gas residence time on the morphology of silicon (1 0 0) samples etched in a reactive ion etching system. Profilometry and atomic force microscopy techniques were used to characterize the etching process focusing attention on the evolution of the surface morphology. Under the condition of variable pressure and gas flow rate, the decrease of the residence time leads to an increase of the silicon etch rate concomitantly with an increase of the surface roughness. Contrary fact is observed when the gas flow is fixed and the pressure is varied. Here, the increasing of residence time leads to a constant increase of silicon etch rate with small variations in final surface roughness. To better understanding this resident time effect, mass spectrometry analyses were realized during the discharge for both gas flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号