首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ablation of Fe3O4 targets has been performed using a pulsed UV laser (KrF, λ = 248 nm, 30 ns pulse duration) onto Si(100) substrates, in reactive atmospheres of O2 and/or Ar, with different oxygen partial pressures. The as-deposited films were characterised by atomic force microscopy (AFM), X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and extraction magnetometry, in order to optimise the deposition conditions in the low temperature range. The results show that a background mixture of oxygen and argon improves the Fe:O ratio in the films as long as the oxygen partial pressure is maintained in the 10−2 Pa range. Thin films of almost stoichiometric single phase polycrystalline magnetite, Fe2.99O4, have been obtained at 483 K and working pressure of 7.8 × 10−2 Pa, with a high-field magnetization of ∼490 emu/cm3 and Verwey transition temperature of 112 K, close to the values reported in the literature for bulk magnetite.  相似文献   

2.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

3.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

4.
The photoluminescence (PL) emission properties of ZnO films obtained on quartz glass substrate by the oxidation of Zn films were studied. The strong single violet emission centering about 413-424 nm was observed in the room temperature PL spectra of the ZnO films. The intensity of violet emission increased and the peak position shift from 424 to 413 nm with increasing oxygen pressures. The violet emission was attributed to the electron transition from the valence band to interstitial zinc (Zni) level under low oxygen pressure conditions (50-500 Pa). Under high oxygen pressure conditions (5000-23,000 Pa), both interstitial zinc (Zni) and zinc Vacancy (VZn) were thought to be responsible for the violet emission.  相似文献   

5.
Highly transparent, n-type conducting ZnO thin films were obtained by low temperature magnetron sputtering of (Co, Al) co-doped ZnO nanocrystalline aerogels. The nanoparticles of ∼30 nm size were synthesized by a sol-gel method using supercritical drying in ethyl alcohol. The structural, optical and electrical properties of the films were investigated. The ZnO films were polycrystalline textured, preferentially oriented with the (0 0 2) crystallographic direction normal to the film plane. The films show within the visible wavelength region an optical transmittance of more than 90% and a low electrical resistivity of 3.5 × 10−4 Ω cm at room temperature.  相似文献   

6.
The nanocrystal thin films of zinc oxide doped by Al (ZnO:Al) were deposited by dc reactive magnetron sputtering on the glass substrates, in the pressure range of 33-51 Pa. From the X-ray diffraction patterns, the nanocrystalline structure of ZnO:Al films and the grain size were determined. The optical transmission spectra depend from the sputtering pressure, but their average value was 90% in the range from 33 Pa to 47 Pa. Also, the sputtering pressure changes the optical band gap of ZnO:Al films, which is highest for films deposited at 37 Pa, 40 Pa and 47 Pa. The obtained films at room temperature have a sheet resistance of 190 Ω/cm2 which increases with time, but the films annealed at temperature of 400 °C have constant resistance. The surface morphology of the films was studied by Scanning electron microscopy. XPS spectra showed that the peak of O1s of the as-deposited films is smaller than the peak of the annealed ZnO:Al films.  相似文献   

7.
Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films have been prepared by pulsed laser deposition. The introduction of Li and N was confirmed by secondary ion mass spectrometry measurements. The structural, electrical, and optical properties as a function of growth temperature were investigated in detail. The lowest room-temperature resistivity of 3.99 Ω cm was achieved at the optimal temperature of 450 °C, with a Hall mobility of 0.17 cm2/V s and hole concentration of 9.12 × 1018 cm−3. The ZnO:(Li,N) films exhibited good crystal quality with a complete c-axis orientation, a high transmittance (about 90%) in the visible region, and a predominant UV emission at room temperature. The two-layer-structure p-ZnO:(Li,N)/n-ZnO homojunctions were fabricated on a sapphire substrate. The current-voltage characteristics exhibited the rectifying behavior of a typical p-n junction.  相似文献   

8.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Taguchi method was used to find the optimal deposition parameters including oxygen partial pressure, argon partial pressure, substrate temperature, and sputtering power. By employing the analysis of variance, we found that the oxygen and argon partial pressures were the most influencing parameters on the electrical properties of ZnO:Ga films. Under the optimized deposition conditions, the ZnO:Ga films showed acceptable crystal quality, lowest electrical resistivity of 2.61 × 10−4 Ω cm, and high transmittance of 90% in the visible region.  相似文献   

9.
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were firstly deposited on polyethylene terephthalate (PET) substrates with ZnO buffer layers by DC magnetron sputtering at room temperature. Dependence of physical properties of ZnO:Zr films on deposition pressure was systematically studied. All the deposited films were polycrystalline and (1 0 0) oriented. When deposition pressure increases from 1 to 2.5 Pa, the crystallinity of the films improves and the resistivity decreases. While deposition pressure increases from 2.5 to 3.5 Pa, the crystallinity of the films deteriorates and the resistivity increases. The lowest resistivity of 1.8 × 10−3 Ω cm was obtained for the films deposited at the optimum deposition pressure of 2.5 Pa. All the films present a high transmittance of above 86% in the wavelength range of the visible spectrum.  相似文献   

10.
Al-N co-doped ZnO films were fabricated by gaseous ammonia annealing at various temperatures. The structure and the electrical properties of Al-N-doped ZnO films strongly depend on the annealing temperature. XRD and SEM analysis indicate that the ZnO films possess a good crystallinity with c-axis orientation, uniform thickness and dense surface. Optical transmission spectra show a high transmittance (∼85%) in the visible region. Hall measurement demonstrates that ZnO films have p-type conduction with high carrier concentration of 8.3 × 1018 cm−3 and low resistivity of 25.0 Ω cm when the annealing temperature is 700 °C. Also the growth process of Al-N co-doped at various temperatures is discussed in detail.  相似文献   

11.
ZnO, SnO2 and zinc stannate thin films were deposited using filtered vacuum arc deposition (FVAD) system on commercial microscope glass and UV fused silica substrates (UVFS) at room temperature (RT). The structural and morphological analyses were performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively. XRD patterns of ZnO films deposited at RT had strongly c-axis orientation, whereas SnO2 and zinc stannate films had amorphous structure as they did not have any defined patterns. Average crystalline size and surface grain size of ZnO films were ∼16 nm, as determined from diffraction line broadening and AFM images, respectively. Optical constants in the 250-1100 nm wavelength range were determined by variable angle spectroscopic ellipsometry and transmission measurements. The transmission of the deposited films in the VIS was 80-90%, affected by interference. The refractive indices and the extinction coefficients of deposited ZnO, SnO2 and zinc stannate films were in the range 1.87-2.15 and 0.02-0.04, depending on wavelengths and deposition parameters. The optical band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. Its values for ZnO, SnO2 and zinc stannate were in the range 3.25-3.30 eV, 3.60-3.98 eV and 3.43-3.52 eV, respectively, depending on the deposition pressure.  相似文献   

12.
Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at ∼380 nm and a blue band centered at ∼430 nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zni) and Zn vacancy (VZn) level transition. A strong blue peak (∼435 nm) was observed in the PL spectra when the αCu (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of αCu and the sputtering power on the blue band was investigated.  相似文献   

13.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

14.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

15.
Cu-doped zinc oxide (ZnO:Cu) films were deposited on p-Si (1 0 0) substrates at 200 °C under various oxygen partial pressures by using radio frequency reactive magnetron sputtering. The properties of the films were characterized by the X-ray diffraction spectroscopy (XRD), energy dispersive spectrometer, X-ray photoelectron spectroscopy (XPS) and fluorescence spectrophotometer with the emphasis on the evolution of microstructures, element composition, valence state of Cu, optical properties. The results indicated that the properties of ZnO:Cu films were significantly affected by oxygen partial pressures. XRD measurements revealed that the sample prepared at the ratio of O2:Ar of 15:10 sccm had the best crystal quality among all ZnO:Cu films. XPS analysis results suggested that the valence of Cu in the ZnO films was a mixed state of +1 and +2, and the integrated intensity ratio of Cu2+ to Cu+ increased with the increment of oxygen partial pressure. The photoluminescence measurements at room temperature revealed a violet, two blue and a green emission. We considered that the origin of green emission came from various oxygen defects when the ZnO:Cu films grew in oxygen poor and enriched environment. Furthermore, the influence of annealing atmosphere on the microstructures and optical properties of ZnO:Cu films were discussed.  相似文献   

16.
Highly transparent and conducting Chromium doped ZnO (Cr:ZnO) thin films with preferential c-axis orientation were grown on (0 0 0 1) sapphire substrates using buffer assisted pulsed laser deposition. The resistivity of Cr:ZnO thin films was found to decrease to a minimum value of ∼1.13×10−3Ω cm with the increasing Cr concentration up to ∼1.9 at.% and then increase with further increase of Cr concentration. On the contrary, the band gap and carrier concentration of Cr:ZnO thin films increased up to ∼3.37 eV and ∼2×1020 cm−3, respectively, with the increase of Cr concentration up to ∼1.9 at.%, then decreased with further increase of Cr concentration. The increase of carrier concentration and conductivity with Cr doping at low Cr concentrations (<1.9 at.%) could be attributed to the presence of Cr in +3 valence state in ZnO thus acting as donor while decrease of carrier concentration beyond ∼1.9 at.% of Cr concentration could be attributed to the charge compensating effect due to the presence of acceptor like point defects such as oxygen interstitials. This was experimentally confirmed using x-ray photoelectron spectroscopy. The observed variation in the band gap of Cr:ZnO thin films with increasing Cr doping was attributed to the competing effects of the high free carrier concentration induced Burstein-Moss blue shift and band gap narrowing.  相似文献   

17.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

18.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

19.
In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.  相似文献   

20.
Epitaxial films of ZnO doped with magnetic ion Fe and, in some cases, with 1% Al show clear evidence of room temperature ferromagnetic ordering. The Al doped optimized samples with carrier concentration nc∼8.0×1020 cm−3 show about 3 times enhanced saturation magnetization (0.58 μB/Fe2+) than the one with nc∼3.0×1020 cm−3 (0.18 μB/Fe2+). A clear correlation between the magnetization per transition metal ion and the ratio of the number of carriers to the number of donors have been found as is expected for carrier-induced room temperature ferromagnetism. The transport mechanism of the electrons in all the DMS films at low temperature range has been identified with the Efros's variable range hopping due to the electron-electron Coulomb interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号