首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

2.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

3.
In the present study, the structural, optical and antibacterial properties of ZnO thin films are reported. ZnO thin films are deposited on borosilicate glass substrates by radio frequency plasma enhanced chemical vapor deposition (PECVD) using oxygen as process gas. The crystallinity of the deposited films is improved upon annealing at 450 °C in air for 1.5 h and the polycrystalline nature of the films is further confirmed by selected area electron diffraction. The particle size of the annealed film (thickness 476 nm) is found to be ∼34 nm from the transmission electron microscopic observation. Energy dispersive X-ray spectrum indicates the stoichiometric deposition of ZnO films. The films are highly transparent (transmittance >85%) in the visible region of electromagnetic spectrum. The films exhibit excellent antibacterial effect towards the growth of Escherichia coli and Pseudomonas aeruginosa.  相似文献   

4.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

5.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

6.
Electrodeposition technique was used in order to produce nanometric zinc oxide films on glass insulating substrates. The effect of electrolyte concentration and applied current density on the formation and growth of electrodeposited Zn thin films in aqueous solutions of ZnSO4 were studied. After a thermal oxidation, a characterization of the structural morphology of the films deposited was carried out by optical microscopy (OM), atomic force microscopy (AFM), scanning electron microscopy (SEM) and by grazing incidence X-rays diffraction (GIXD). These characterization techniques show that the grains size of the films after oxidation at temperature 450 °C is between 5 and 15 nm, as well as the structure is polycrystalline nature with several orientations. UV/vis spectrophotometry confirms that it is possible to obtain transparent good ZnO films with an average transmittance of approximately 80% within the visible wavelength region, as well as the optical gap of obtained ZnO films is 3.17 eV.  相似文献   

7.
Transparent conductive ZnO/Ag/ZnO multilayer electrodes having much lower electrical resistance than the widely used transparent electrodes were prepared by simultaneous RF magnetron sputtering of ZnO and DC magnetron sputtering of Ag. An Ag film with different thickness was used as intermediate metallic layers. The optimum thickness of Ag thin films was determined to be 6 nm for high optical transmittance and good electrical conductivity. With about 20-25 nm thick ZnO films, the multilayer showed high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of the multilayers were changed mainly by Ag film properties. A high quality transparent electrode, having sheet resistance as low as 3 ohm/sq and high transmittance of 90% at 580 nm, was obtained and could be reproduced by controlling the preparation parameter properly. The above property is suitable as transparent electrode for dye sensitized solar cells (DSSC).  相似文献   

8.
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%.  相似文献   

9.
Pure and Cobalt doped zinc oxide were deposited on glass substrate by Ultrasonic spray method. Zinc acetate dehydrate, Cobalt chloride, 4-methoxyethanol and monoethanolamine were used as a starting materials, dopant source, solvent and stabilizer, respectively. The ZnO samples and ZnO:Co with Cobalt concentration of 2 wt.% were deposited at 300, 350 and 400 °C. The effects of substrate temperature and presence of Co as doping element on the structural, electrical and optical properties were examined. Both pure and Co doped ZnO samples are (0 0 2) preferentially oriented. The X-ray diffraction results indicate that the samples have polycrystalline nature and hexagonal wurtzite structure with the maximum average crystallite size of ZnO and ZnO:Co were 33.28 and 55.46 nm. An increase in the substrate temperature and presence doping the crystallinity of the thin films increased. The optical transmittance spectra showed transmittance higher than 80% within the visible wavelength region. The band gap energy of the thin films increased after doping from 3.25 to 3.36 eV at 350 °C.  相似文献   

10.
Highly transparent, n-type conducting ZnO thin films were obtained by low temperature magnetron sputtering of (Co, Al) co-doped ZnO nanocrystalline aerogels. The nanoparticles of ∼30 nm size were synthesized by a sol-gel method using supercritical drying in ethyl alcohol. The structural, optical and electrical properties of the films were investigated. The ZnO films were polycrystalline textured, preferentially oriented with the (0 0 2) crystallographic direction normal to the film plane. The films show within the visible wavelength region an optical transmittance of more than 90% and a low electrical resistivity of 3.5 × 10−4 Ω cm at room temperature.  相似文献   

11.
Polystyrene spheres (PS) were synthesized by an emulsifier-free emulsion polymerization technique and the PS colloidal crystal templates were assembled orderly on clean glass substrates by dip-drawing method from emulsion of PS. Porous ZnO thin films were prepared by filling the ZnO sol into the spaces among the close-packed PS templates and then annealing to remove the PS templates. The effects of ZnO precursor sol concentration and dipping time in sol on the porous structure of the thin films were studied. The results showed an ordered ZnO porous thin film with designed pore size that depended on the sol concentration and PS size could be obtained. And the shrinkage of pore diameter was about 30-43%. X-ray diffraction (XRD) spectra indicated the thin film was wurtzite structure. The transmittance spectrum showed that optical transmittance decreased with the decrease of wavelength, but kept above 80% optical transmittances beyond the wavelength of 550 nm. Optical band gap of the porous ZnO thin film (fired at 500 °C) was 3.22 eV.  相似文献   

12.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

13.
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10−4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark IV curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.  相似文献   

14.
Undoped ZnO thin films have been deposited onto glass substrates by spray pyrolysis. The structural, electrical and optical properties were studied on thin films, prepared from precursor solutions with varying the ethanol concentrations. X-ray diffraction studies have shown polycrystalline nature of the films with a hexagonal wurtzite-type structure. The preferential orientation plane (1 0 0) of the ZnO thin film is found to be sensitive to ethanol concentration. The texture coefficient (TC) and grain size value have been calculated. Also ethanol concentration was found to have significant effect on sheet resistivity of the films.  相似文献   

15.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

16.
The Ti-doped ZnO (ZnO:Ti) thin films have been deposited on glass substrates by radio frequency (RF) reactive magnetron sputtering technique with different Ti doping concentrations. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited ZnO:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fluorescence spectrophotometer. The XRD measurements revealed that all the films had hexagonal wurtzite type structure with a strong (100) preferential orientation and relatively weak (002), (101), and (110) peaks. It was found that the intensity of the (100) diffraction peaks was strongly dependent on the Ti doping concentration. And the full width at half-maximum (FWHM) of (002) diffraction peaks constantly changed at various Ti contents, which decreased first and then increased, reaching a minimum of about 0.378° at 1.43 at.% Ti. The morphologies of ZnO:Ti films with 1.43 at.% Ti showed a denser texture and better smooth surface. All the films were found to be highly transparent in the visible wavelength region with an average transmittance over 90%. Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibited a blue-shift of Eg. It can be attributed to the incorporation of Ti atoms and raising the concentration of carriers. Five emission peaks located at 412, 448, 486, 520, and 550 nm were observed from the photoluminescence spectra measured at room temperature and the origin of these emissions was discussed.  相似文献   

17.
Cobalt doped zinc oxide (ZnO:Co) thin films were deposited on glass substrates by ultrasonic spray technique decomposition of Zinc acetate dihydrate and cobalt acetate tetrahydrate in an ethanol solution with film thickness. All films are polycrystalline with a hexagonal wurtzite-type structure with a preferential orientation according to the direction (0 0 2), with the maximum crystallite size was found of 59.42 nm at 569 nm. The average transmittance of all films is about 65–95% measured by UV–vis analyzer. The band gap energy increased from 3.08 to 3.32 eV with increasing the film thickness from 192 to 569 nm. The increase of the electrical conductivity with increases in the film thickness to maximum value of 9.27 (Ω cm)−1 can be explained by the increase in carrier concentration and displacement of the electrons of the films. The correlation between the band gap and crystal structure suggests that the band gap energy of Co doped ZnO is influenced by the crystallite size and the mean strain.  相似文献   

18.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

19.
ZnO, SnO2 and zinc stannate thin films were deposited using filtered vacuum arc deposition (FVAD) system on commercial microscope glass and UV fused silica substrates (UVFS) at room temperature (RT). The structural and morphological analyses were performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively. XRD patterns of ZnO films deposited at RT had strongly c-axis orientation, whereas SnO2 and zinc stannate films had amorphous structure as they did not have any defined patterns. Average crystalline size and surface grain size of ZnO films were ∼16 nm, as determined from diffraction line broadening and AFM images, respectively. Optical constants in the 250-1100 nm wavelength range were determined by variable angle spectroscopic ellipsometry and transmission measurements. The transmission of the deposited films in the VIS was 80-90%, affected by interference. The refractive indices and the extinction coefficients of deposited ZnO, SnO2 and zinc stannate films were in the range 1.87-2.15 and 0.02-0.04, depending on wavelengths and deposition parameters. The optical band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. Its values for ZnO, SnO2 and zinc stannate were in the range 3.25-3.30 eV, 3.60-3.98 eV and 3.43-3.52 eV, respectively, depending on the deposition pressure.  相似文献   

20.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号